Skip to main content

Studying Angiogenesis in the Rabbit Corneal Pocket Assay

  • Protocol
  • First Online:
Vascular Morphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2206))

Abstract

The rabbit corneal micropocket assay uses the avascular cornea as a substrate to study angiogenesis in vivo. The continuous monitoring of neovascular growth in the same animal allows for the evaluation of drugs acting as suppressors or stimulators of angiogenesis. Through the use of standardized slow-release pellets, a predictable angiogenic response can be quantified over the course of 1–2 weeks. Uniform slow-release pellets are prepared by mixing purified angiogenic growth factors such as basic fibroblast growth factor (FGF) or vascular endothelial growth factor (VEGF) and a synthetic polymer to allow for their slow release. A micropocket is surgically created in the cornea thickness under anesthesia and in sterile conditions. The angiogenesis stimulus (growth factor but also tissue fragment or cell suspension) is placed into the pocket in order to induce vascular outgrowth from the limbal capillaries where vessels are preexisting. On the following days, the neovascular development and progression are measured and qualified using a slit lamp, as well as the concomitant vascular phenotype or inflammatory features. The results of the assay allow to assess the ability of potential therapeutic molecules to modulate angiogenesis in vivo, both when released locally or given by ocular formulations or through systemic treatment. In this chapter the experimental details of the avascular rabbit cornea assay, the technical challenges, advantages, and limitations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jain RK, Schlenger K, Hockel M et al (1997) Quantitative angiogenesis assays: progress and problems. Nat Med 3:1203–1208

    Article  CAS  PubMed  Google Scholar 

  2. Nowak-Sliwinska P, Alitalo K, Allen E et al (2018) Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 21(3):425–532. https://doi.org/10.1007/s10456-018-9613-x

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chang JH, Gabison EE, Kato T et al (2001) Corneal neovascularization. Curr Opin Ophthalmol 12:242–249

    Article  CAS  PubMed  Google Scholar 

  4. Ellenberg D, Azar DT, Hallak JA et al (2010) Novel aspects of corneal angiogenic and lymphangiogenic privilege. Prog Retin Eye Res 29(3):208–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Maddula S, Davis DK, Maddula S et al (2011) Horizons in therapy for corneal angiogenesis. Ophthalmology 118:591–599

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ambati BK, Nozaki M, Singh N et al (2006) Corneal avascularity is due to soluble VEGF receptor-1. Nature 443(7114):993–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gimbrone M Jr, Cotran R, Leapman SB et al (1974) Tumor growth and neovascularization: an experimental model using the rabbit cornea. J Natl Cancer Inst 52:413–427

    Article  PubMed  Google Scholar 

  8. Langer R, Folkman J (1976) Polymers for the sustained release of proteins and other macromolecules. Nature 363:797–800

    Article  Google Scholar 

  9. Brem SS, Gullino PM, Medina D (1977) Angiogenesis: a marker for neoplastic transformation of mammary papillary hyperplasia. Science 195(4281):880–882

    Article  CAS  PubMed  Google Scholar 

  10. Cervenak L, Morbidelli L, Donati D et al (2000) Abolished angiogenicity and tumorigenicity of Burkitt lymphoma by Interleukin-10. Blood 96:2568–2573

    Article  CAS  PubMed  Google Scholar 

  11. Woolard J, Wang WY, Bevan HS et al (2004) VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res 64(21):7822–7835

    Article  CAS  PubMed  Google Scholar 

  12. Marconcini L, Marchio S, Morbidelli L et al (1999) c-fos-induced growth factor/vascular endothelial growth factor D induces angiogenesis in vivo and in vitro. Proc Natl Acad Sci U S A 96(17):9671–9676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brem H, Folkman J (1975) Inhibition of tumor angiogenesis mediated by cartilage. J Exp Med 141(2):427–439

    Article  CAS  PubMed  Google Scholar 

  14. Bard RH, Mydlo JH, Freed SZ (1986) Detection of tumor angiogenesis factor in adenocarcinoma of kidney. Urology 27(5):447–450

    Article  CAS  PubMed  Google Scholar 

  15. Gallo O, Masini E, Morbidelli L et al (1998) Role of nitric oxide in angiogenesis and tumor progression in head and neck cancer. J Natl Cancer Inst 90:587–596

    Article  CAS  PubMed  Google Scholar 

  16. da Silva BB, da Silva Júnior RG, Borges US et al (2005) Quantification of angiogenesis induced in rabbit cornea by breast carcinoma of women treated with tamoxifen. J Surg Oncol 90(2):77–80

    Article  PubMed  Google Scholar 

  17. Ziche M, Morbidelli L, Choudhuri R et al (1997) Nitric oxide-synthase lies downstream of vascular endothelial growth factor but not basic fibroblast growth factor induced angiogenesis. J Clin Invest 99:2625–2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lasagna N, Fantappiè O, Solazzo M et al (2006) Hepatocyte growth factor and inducible nitric oxide synthase are involved in multidrug resistance-induced angiogenesis in hepatocellular carcinoma cell lines. Cancer Res 66(5):2673–2682

    Article  CAS  PubMed  Google Scholar 

  19. Ziche M, Morbidelli L, Masini E et al (1994) Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J Clin Invest 94:2036–2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Monti M, Donnini S, Morbidelli L et al (2013) PKCε activation promotes FGF-2 exocytosis and induces endothelial cell proliferation and sprouting. J Mol Cell Cardiol 63:107–117

    Article  CAS  PubMed  Google Scholar 

  21. Carriero MV, Bifulco K, Minopoli M et al (2014) UPARANT: a urokinase receptor-derived peptide inhibitor of VEGF-driven angiogenesis with enhanced stability and in vitro and in vivo potency. Mol Cancer Ther 13(5):1092–1104. https://doi.org/10.1158/1535-7163.MCT-13-0949

    Article  CAS  PubMed  Google Scholar 

  22. Presta M, Rusnati M, Belleri M et al (1999) Purine analog 6-methylmercaptopurine ribose inhibits early and late phases of the angiogenesis process. Cancer Res 59(10):2417–2424

    CAS  PubMed  Google Scholar 

  23. Ziche M, Morbidelli L (2009) Molecular regulation of tumour angiogenesis by nitric oxide. Eur Cytokine Netw 20(4):164–170

    Article  CAS  PubMed  Google Scholar 

  24. Chang LK, Garcia-Cardena G, Farnebo F et al (2004) Dose-dependent response of FGF-2 for lymphangiogenesis. Proc Natl Acad Sci U S A 101(32):11658–11663. https://doi.org/10.1073/pnas.0404272101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Taraboletti G, Morbidelli L, Donnini S et al (2000) The heparin binding 25kDa fragment of thrombospondin-1 promotes angiogenesis and modulates gelatinases and TIMP-2 in endothelial cells. FASEB J 14:1674–1676

    Article  CAS  PubMed  Google Scholar 

  26. Ziche M, Jones J, Gullino PM (1982) Role of prostaglandinE1 and copper in angiogenesis. J Natl Cancer Inst 69:475–482

    CAS  PubMed  Google Scholar 

  27. Parenti A, Morbidelli L, Ledda F et al (2001) The bradykinin/B1 receptor promotes angiogenesis by upregulation of endogenous FGF-2 in endothelium via the nitric oxide synthase pathway. FASEB J 15(8):1487–1489

    Article  CAS  PubMed  Google Scholar 

  28. Federman JL, Brown GC, Felberg NT et al (1980) Experimental ocular angiogenesis. Am J Ophthalmol 89(2):231–237

    Article  CAS  PubMed  Google Scholar 

  29. Rogers MS, Birsner AE, D'Amato RJ (2007) The mouse cornea micropocket angiogenesis assay. Nat Protoc 2(10):2545–2550

    Article  CAS  PubMed  Google Scholar 

  30. Ziche M, Alessandri G, Gullino PM (1989) Gangliosides promote the angiogenic response. Lab Investig 61:629–634

    CAS  PubMed  Google Scholar 

  31. Morbidelli L, Donnini S, Chillemi F et al (2003) Angiosuppressive and angiostimulatory effects exerted by synthetic partial sequences of endostatin. Clin Cancer Res 9(14):5358–5369

    CAS  PubMed  Google Scholar 

  32. Bagli E, Stefaniotou M, Morbidelli L et al (2004) Luteolin inhibits vascular endothelial growth factor-induced angiogenesis; inhibition of endothelial cell survival and proliferation by targeting phosphatidylinositol 3′-kinase activity. Cancer Res 64(21):7936–7946

    Article  CAS  PubMed  Google Scholar 

  33. Donnini S, Finetti F, Lusini L et al (2006) Divergent effects of quercetin conjugates on angiogenesis. Br J Nutr 95(5):1016–1023

    Article  CAS  PubMed  Google Scholar 

  34. Cantara S, Donnini S, Morbidelli L et al (2004) Physiological levels of amyloid peptides stimulate the angiogenic response through FGF-2. FASEB J 18(15):1943–1945

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by the Italian Ministry of University (MIUR) and the Italian Association for Cancer Research (AIRC). We thank Dr. Dario Rusciano, Sooft Italia SpA, for providing UPARANT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Morbidelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Morbidelli, L., Ciccone, V., Ziche, M. (2021). Studying Angiogenesis in the Rabbit Corneal Pocket Assay. In: Ribatti, D. (eds) Vascular Morphogenesis. Methods in Molecular Biology, vol 2206. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0916-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0916-3_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0915-6

  • Online ISBN: 978-1-0716-0916-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics