Skip to main content

Computer-Aided Design of Active Pseudoknotted Hammerhead Ribozymes

  • Protocol
  • First Online:
Ribozymes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2167))

Abstract

Pseudoknots are important motifs for stabilizing the structure of functional RNAs. As an example, pseudoknotted hammerhead ribozymes are highly active compared to minimal ribozymes. The design of new RNA sequences that retain the function of a model RNA structure includes taking in account pseudoknots presence in the structure, which is usually a challenge for bioinformatics tools. Our method includes using “Enzymer,” a software for designing RNA sequences with desired secondary structures that may include pseudoknots. Enzymer implements an efficient stochastic search and optimization algorithm to sample RNA sequences from low ensemble defect mutational landscape of an initial design template to generate an RNA sequence that is predicted to fold into the desired target structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gupta A, Rahman R, Li K et al (2012) Identifying complete RNA structural ensembles including pseudoknots. RNA Biol 9:187–199

    Article  CAS  Google Scholar 

  2. Han KS, Byun Y (2003) PseudoViewer2: visualization of RNA pseudoknots of any type. Nucleic Acids Res 31:3432–3440

    Article  CAS  Google Scholar 

  3. Staple DW, Butcher SE (2005) Pseudoknots: RNA structures with diverse functions. PLoS Biol 3:e213

    Article  Google Scholar 

  4. Forster AC, Symons RH (1987) Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites. Cell 49:211–220

    Article  CAS  Google Scholar 

  5. De La Pena M, Gago S, Flores R (2003) Peripheral regions of natural hammerhead ribozymes greatly increase their self-cleavage activity. EMBO J 22:5561–5570

    Article  Google Scholar 

  6. Khvorova A, Lescoute A, Westhof E et al (2003) Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nat Struct Biol 10:708–712

    Article  CAS  Google Scholar 

  7. Perreault J, Weinberg Z, Roth A et al (2011) Identification of hammerhead ribozymes in all domains of life reveals novel structural variations. PLoS Comput Biol 7:e1002031

    Article  CAS  Google Scholar 

  8. Tang X, Ren Q, Yang L et al (2018) Single transcript unit CRISPR 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing. Plant Biotechnol J 17(7):1431–1445

    Article  Google Scholar 

  9. Sack M, Stifel J, Kreft SG et al (2019) Neomycin-dependent hammerhead ribozymes for the direct control of gene expression in Saccharomyces cerevisiae. Methods 161:35–40

    Article  CAS  Google Scholar 

  10. Di Tomasso G, Jenkins LMM, Legault P (2016) ARiBo pull-down for riboproteomic studies based on label-free quantitative mass spectrometry. RNA 22:1760–1770

    Article  Google Scholar 

  11. Niu T, Liu Y, Li J et al (2018) Engineering a glucosamine-6-phosphate responsive glmS ribozyme switch enables dynamic control of metabolic flux in bacillus subtilis for overproduction of n-acetylglucosamine. ACS Synth Biol 7:2423–2435

    Article  CAS  Google Scholar 

  12. Levesque D, Choufani S, Perreault JP (2002) Delta ribozyme benefits from a good stability in vitro that becomes outstanding in vivo. RNA 8:464–477

    Article  CAS  Google Scholar 

  13. Gao Y, Zhao Y (2014) Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J Integr Plant Biol 56:343–349

    Article  CAS  Google Scholar 

  14. Lacroix-Labonte J, Girard N, Dagenais P et al (2016) Rational engineering of the Neurospora VS ribozyme to allow substrate recognition via different kissing-loop interactions. Nucleic Acids Res 44:6924–6934

    Article  CAS  Google Scholar 

  15. Kobori S, Takahashi K, Yokobayashi Y (2017) Deep sequencing analysis of aptazyme variants based on a pistol ribozyme. ACS Synth Biol 6:1283–1288

    Article  CAS  Google Scholar 

  16. Felletti M, Stifel J, Wurmthaler LA et al (2016) Twister ribozymes as highly versatile expression platforms for artificial riboswitches. Nat Commun 7

    Google Scholar 

  17. Cobaleda C, Sanchez-Garcia I (2001) RNase P: from biological function to biotechnological applications. Trends Biotechnol 19:406–411

    Article  CAS  Google Scholar 

  18. Fiskaa T, Birgisdottir AB (2010) RNA reprogramming and repair based on trans-splicing group I ribozymes. New Biotechnol 27:194–203

    Article  CAS  Google Scholar 

  19. Zhong J, Karberg M, Lambowitz AM (2003) Targeted and random bacterial gene disruption using a group II intron (targetron) vector containing a retrotransposition-activated selectable marker. Nucleic Acids Res 31:1656–1664

    Article  CAS  Google Scholar 

  20. Zandi K, Butler G, Kharma N (2016) An adaptive defect weighted sampling algorithm to design pseudoknotted RNA secondary structures. Front Genet 7:129

    Article  Google Scholar 

  21. Zadeh JN, Steenberg CD, Bois JS et al (2011) NUPACK: analysis and design of nucleic acid systems. J Comput Chem 32:170–173

    Article  CAS  Google Scholar 

  22. Dirks RM, Pierce NA (2003) A partition function algorithm for nucleic acid secondary structure including pseudoknots. J Comput Chem 24:1664–1677

    Article  CAS  Google Scholar 

  23. Serra MJ, Turner DH (1995) Predicting thermodynamic properties of RNA. Methods Enzymol 259:242–261

    Article  CAS  Google Scholar 

  24. Mathews DH, Sabina J, Zuker M et al (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940

    Article  CAS  Google Scholar 

  25. Zadeh JN, Wolfe BR, Pierce NA (2011) Nucleic acid sequence design via efficient ensemble defect optimization. J Comput Chem 32:439–452

    Article  CAS  Google Scholar 

  26. Dotu I, Garcia-Martin JA, Slinger BL et al (2014) Complete RNA inverse folding: computational design of functional hammerhead ribozymes. Nucleic Acids Res 42:11752–11762

    Article  CAS  Google Scholar 

  27. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Springs Harbor Laboratory Press, Cold Springs Harbor Laboratory, NY

    Google Scholar 

  28. https://git-scm.com/

  29. https://pypi.org/project/pip/

  30. Najeh S, Zandi K, Kharma N, Perreault J (2019) Computational design and experimental verification of pseudoknotted ribozymes. Nucleic Acids Res 47(1):29–42

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nawwaf Kharma or Jonathan Perreault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Najeh, S., Zandi, K., Djerroud, S., Kharma, N., Perreault, J. (2021). Computer-Aided Design of Active Pseudoknotted Hammerhead Ribozymes. In: Scarborough, R.J., Gatignol, A. (eds) Ribozymes. Methods in Molecular Biology, vol 2167. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0716-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0716-9_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0715-2

  • Online ISBN: 978-1-0716-0716-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics