Skip to main content

Recovery of Extra-Radical Fungal Peptides Amenable for Shotgun Protein Profiling in Arbuscular Mycorrhizae

  • Protocol
  • First Online:
Arbuscular Mycorrhizal Fungi

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2146))

Abstract

In arbuscular mycorrhizal symbiosis, the belowground mycelium that develops into the soil, not only provides extensive pathways for nutrient fluxes, the occupation of different niches, and dispersal of propagules, but also has strong influences upon biogeochemical cycling. By providing a valuable overview of expression changes of most proteins, shotgun proteomics can help decipher key metabolic pathways involved in the functioning of fungal mycelia. In this protocol, we describe the combination of extra-radical mycelium growth systems with gel-based extraction of fungal peptides amenable for shotgun protein profiling, which allows gaining information about the extra-radical proteome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bago B, Azcón-Aguilar C, Piché Y (1998) Architecture and developmental dynamics of the external mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown under monoxenic conditions. Mycologia 90:52–62

    Article  Google Scholar 

  2. Bücking H, Liepold E, Ambilwade P (2012) The role of the mycorrhizal symbiosis in nutrient uptake of plants and the regulatory mechanisms underlying these transport processes. Plant Sci 4:108–132

    Google Scholar 

  3. Leake J, Johnson D, Donnelly D et al (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045

    Article  Google Scholar 

  4. Walder F, Niemann H, Natarajan M et al (2012) Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiol 159:789–797

    Article  CAS  Google Scholar 

  5. Fellbaum CR, Mensah JA, Cloos AJ et al (2014) Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytol 203:646–656

    Article  CAS  Google Scholar 

  6. Gorzelak MA, Asay AK, Pickles BJ, Simard SW (2015) Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities. AoB Plants 7:plv050

    Article  Google Scholar 

  7. Johson D, Gilbert L (2015) Interplant signalling through hyphal networks. New Phytol 205:1448–1453

    Article  Google Scholar 

  8. Hanssen JF, Thingstad TF, Goksoyr J (1974) Evaluation of hvphal lengths and fungal biomass in soil by a membrane filter technique. Oikos 25:102–107

    Article  Google Scholar 

  9. Li XL, George E, Marschner H (1991) Phosphorus depletion and pH decrease at the root-soil and hyphae soil interfaces of VA mycorrhizal white clover fertilized with ammonium. New Phytol 119:397–404

    Article  CAS  Google Scholar 

  10. St-Arnaud M, Hamel C, Vimard B et al (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol Res 100:328–332

    Article  Google Scholar 

  11. Kuhn H, Küster H, Requena N (2010) Membrane steroid-binding protein 1 induced by a diffusible fungal signal is critical for mycorrhization in Medicago truncatula. New Phytol 185:716–733

    Article  CAS  Google Scholar 

  12. Gutteridge A, Pir P, Castrillo JI et al (2010) Nutrient control of eukaryote cell growth: a systems biology study in yeast. BMC Biol 8:68

    Article  Google Scholar 

  13. Plaxton WC, Tran HT (2011) Metabolic adaptations of phosphate-starved plants. Plant Physiol 156:1006–1015

    Article  CAS  Google Scholar 

  14. Arif W, Datar G, Kalsotra A (2017) Intersections of post-transcriptional gene regulatory mechanisms with intermediary metabolism. Biochim Biophys Acta 1860:349–362

    Article  CAS  Google Scholar 

  15. Alexova R, Millar AH (2013) Proteomics of phosphate use and deprivation in plants. Proteomics 13:609–623

    Article  CAS  Google Scholar 

  16. Haynes PA, Roberts TH (2007) Subcellular shotgun proteomics in plants: looking beyond the usual suspects. Proteomics 7:2963–2975

    Article  CAS  Google Scholar 

  17. Laemmli UK, Amos LA, Klug A (1970) Correlation between structural transformation and cleavage of the major head protein of T4 bacteriophage. Cell 7:191–203

    Article  Google Scholar 

  18. Zhang Q, Yang R, Tang J et al (2010) Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion. PLoS One 5:e12380

    Article  Google Scholar 

  19. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  20. Ramagli LS, Rodriguez LW (1985) Quantification of microgram amounts of protein in two-dimensional polyacrylamide gel electrophoresis sample buffer. Electrophoresis 6:559–563

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghislaine Recorbet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Recorbet, G., Courty, PE., Wipf, D. (2020). Recovery of Extra-Radical Fungal Peptides Amenable for Shotgun Protein Profiling in Arbuscular Mycorrhizae. In: Ferrol, N., Lanfranco, L. (eds) Arbuscular Mycorrhizal Fungi. Methods in Molecular Biology, vol 2146. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0603-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0603-2_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0602-5

  • Online ISBN: 978-1-0716-0603-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics