Skip to main content

Expression and Purification of an Intrinsically Disordered Protein

  • Protocol
  • First Online:
Intrinsically Disordered Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2141))

Abstract

Intrinsically disordered proteins (IDPs) describe a group of proteins that do not have a regular tertiary structure and typically have very little ordered secondary structure. Despite not following the biochemical dogma of “structure determines function” and “function determines structure,” IDPs have been identified as having numerous biological functions. We describe here the steps to express and purify the intrinsically disordered stress response protein, Late embryogenesis abundant protein 3-2 from Arabidopsis thaliana (AtLEA 3-2), with 15N and 13C isotopes in E. coli, although the protocol can be adapted for any IDP with or without isotopic labeling. The atlea 3-2 gene has been cloned into the pET-SUMO vector that in addition to the SUMO portion encodes an N-terminal hexahistidine sequence (His-tag). This vector allows for the SUMO-AtLEA 3-2 fusion protein to be purified using Ni-affinity chromatography and, through the use of ubiquitin-like-specific protease 1 (Ulp1, a SUMO protease), results in an AtLEA 3-2 with a native N-terminus. We also describe the expression and purification of Ulp1 itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27:527–533

    Article  CAS  PubMed  Google Scholar 

  2. Uversky VN (2013) A decade and a half of protein intrinsic disorder: biology still waits for physics. Protein Sci 22:693–724. https://doi.org/10.1002/pro.2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu J, Perumal NB, Oldfield CJ et al (2006) Intrinsic disorder in transcription factors. Biochemistry 45:6873–6888. https://doi.org/10.1021/bi0602718

    Article  CAS  PubMed  Google Scholar 

  4. Iakoucheva LM, Brown CJ, Lawson JD et al (2002) Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol 323:573–584. https://doi.org/10.1016/S0022-2836(02)00969-5

    Article  CAS  PubMed  Google Scholar 

  5. Sun X, Rikkerink EHA, Jones WT, Uversky VN (2013) Multifarious roles of intrinsic disorder in proteins illustrate its broad impact on plant biology. Plant Cell 25:38–55. https://doi.org/10.1105/tpc.112.106062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Graether SP, Boddington KF (2014) Disorder and function: a review of the dehydrin protein family. Front Plant Sci 5:e576. https://doi.org/10.3389/fpls.2014.00576

    Article  Google Scholar 

  7. Oldfield CJ, Cheng Y, Cortese MS et al (2005) Comparing and combining predictors of mostly disordered proteins. Biochemistry 44:1989–2000. https://doi.org/10.1021/bi047993o

    Article  CAS  PubMed  Google Scholar 

  8. Varadi M, Kosol S, Lebrun P et al (2014) pE-DB: a database of structural ensembles of intrinsically disordered and of unfolded proteins. Nucleic Acids Res 42:D326–D335. https://doi.org/10.1093/nar/gkt960

    Article  CAS  PubMed  Google Scholar 

  9. Gellissen G (2006) Production of recombinant proteins: novel microbial and eukaryotic expression systems. John Wiley & Sons, Hoboken, New Jersey

    Google Scholar 

  10. Yanaka S, Yagi H, Yogo R et al (2018) Stable isotope labeling approaches for NMR characterization of glycoproteins using eukaryotic expression systems. J Biomol NMR 71:193–202. https://doi.org/10.1007/s10858-018-0169-2

    Article  CAS  PubMed  Google Scholar 

  11. Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–421. https://doi.org/10.1016/S0958-1669(99)00003-8

    Article  CAS  PubMed  Google Scholar 

  12. Graether SP (2019) Troubleshooting guide to expressing intrinsically disordered proteins for use in NMR experiments. Front Mol Biosci 5:49. https://doi.org/10.3389/fmolb.2018.00118

    Article  CAS  Google Scholar 

  13. Reverter D, Lima CD (2009) Preparation of SUMO proteases and kinetic analysis using endogenous substrates. Methods Mol Biol 497:225–239. https://doi.org/10.1007/978-1-59745-566-4_15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Na J-H, Lee W-K, Yu YG (2018) How do we study the dynamic structure of unstructured proteins: a case study on Nopp140 as an example of a large, intrinsically disordered protein. Int J Mol Sci 19:381. https://doi.org/10.3390/ijms19020381

    Article  CAS  PubMed Central  Google Scholar 

  15. Breindel L, Burz DS, Shekhtman A (2018) Interaction proteomics by using in-cell NMR spectroscopy. J Proteome 191:202–211. https://doi.org/10.1016/j.jprot.2018.02.006

    Article  CAS  Google Scholar 

  16. Marley J, Lu M, Bracken C (2001) A method for efficient isotopic labeling of recombinant proteins. J Biomol NMR 20:71–75. https://doi.org/10.1023/A:1011254402785

    Article  CAS  PubMed  Google Scholar 

  17. Dhamole PB, Mahajan P, Feng H (2010) Sugaring out: a new method for removal of acetonitrile from preparative RP-HPLC eluent for protein purification. Process Biochem 45:1672–1676. https://doi.org/10.1016/j.procbio.2010.06.020

    Article  CAS  Google Scholar 

  18. Kalthoff C (2003) A novel strategy for the purification of recombinantly expressed unstructured protein domains. J Chromatogr B 786:247–254. https://doi.org/10.1016/S1570-0232(02)00908-X

    Article  CAS  Google Scholar 

  19. Livernois AM, Hnatchuk DJ, Findlater EE, Graether SP (2009) Obtaining highly purified intrinsically disordered protein by boiling lysis and single step ion exchange. Anal Biochem 392:70–76. https://doi.org/10.1016/j.ab.2009.05.023

    Article  CAS  PubMed  Google Scholar 

  20. Gallagher SR (2012), One‐dimensional SDS gel electrophoresis of proteins. Curr Protoc Prot Sci 68:10.1.1–10.1.44 https://doi.org/10.1002/0471140864.ps1001s68

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen P. Graether .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Singh, K.K., Graether, S.P. (2020). Expression and Purification of an Intrinsically Disordered Protein. In: Kragelund, B.B., Skriver, K. (eds) Intrinsically Disordered Proteins. Methods in Molecular Biology, vol 2141. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0524-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0524-0_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0523-3

  • Online ISBN: 978-1-0716-0524-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics