Skip to main content

Exploring Protein Intrinsic Disorder with MobiDB

  • Protocol
  • First Online:
Intrinsically Disordered Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2141))

Abstract

Nowadays, it is well established that many proteins or regions under physiological conditions lack a fixed three-dimensional structure and are intrinsically disordered. MobiDB is the main repository of protein disorder and mobility annotations, combining different data sources to provide an exhaustive overview of intrinsic disorder. MobiDB includes curated annotations from other databases, indirect disorder evidence from structural data, and disorder predictions from protein sequences. It provides an easy-to-use web server to visualize and explore disorder information. This chapter describes the data available in MobiDB, emphasizing how to use and access the intrinsic disorder data. MobiDB is available at URL http://mobidb.bio.unipd.it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Der Lee R, Buljan M, Lang B et al (2014) Classification of intrinsically disordered regions and proteins. Chem Rev 114:6589–6631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Tompa P, Schad E, Tantos A et al (2015) Intrinsically disordered proteins: emerging interaction specialists. Curr Opin Struct Biol 35:49–59

    Article  CAS  PubMed  Google Scholar 

  3. Pancsa R, Tompa P (2012) Structural disorder in eukaryotes. PLoS One 7(4):e34687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xue B, Dunker AK, Uversky VN (2012) Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J Biomol Struct Dyn 30:137–149

    Article  CAS  PubMed  Google Scholar 

  5. Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41:415–427

    Article  CAS  PubMed  Google Scholar 

  6. Romero P, Obradovic Z, Li X et al (2001) Sequence complexity of disordered protein. Proteins 42:38–48

    Article  CAS  PubMed  Google Scholar 

  7. Davey NE (2019) The functional importance of structure in unstructured protein regions. Curr Opin Struct Biol 56:155–163

    Article  CAS  PubMed  Google Scholar 

  8. Fuxreiter M, Simon I, Friedrich P et al (2004) Preformed structural elements feature in partner recognition by intrinsically unstructured proteins. J Mol Biol 338:1015–1026

    Article  CAS  PubMed  Google Scholar 

  9. Gouw M, Michael S, Sámano-Sánchez H et al (2018) The eukaryotic linear motif resource—2018 update. Nucleic Acids Res 46(D1):D428–D434

    Article  CAS  PubMed  Google Scholar 

  10. Schad E, Fichó E, Pancsa R et al (2018) DIBS: a repository of disordered binding sites mediating interactions with ordered proteins. Bioinformatics 34:535–537

    Article  CAS  PubMed  Google Scholar 

  11. Van Roey K, Uyar B, Weatheritt RJ et al (2014) Short linear motifs: ubiquitous and functionally diverse protein interaction modules directing cell regulation. Chem Rev 114:6733–6778

    Article  PubMed  CAS  Google Scholar 

  12. Callaway E (2015) The revolution will not be crystallized: a new method sweeps through structural biology. Nature 525:172–174

    Article  CAS  PubMed  Google Scholar 

  13. Cheng Y (2015) Single-particle Cryo-EM at crystallographic resolution. Cell 161:450–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Felli IC, Pierattelli R (2012) Recent progress in NMR spectroscopy: toward the study of intrinsically disordered proteins of increasing size and complexity. IUBMB Life 64:473–481

    Article  CAS  PubMed  Google Scholar 

  15. Theillet F-X, Binolfi A, Bekei B et al (2016) Structural disorder of monomeric α-synuclein persists in mammalian cells. Nature 530:45–50

    Article  CAS  PubMed  Google Scholar 

  16. Schuler B, Soranno A, Hofmann H et al (2016) Single-molecule FRET spectroscopy and the polymer physics of unfolded and intrinsically disordered proteins. Annu Rev Biophys 45:207–231

    Article  CAS  PubMed  Google Scholar 

  17. Di Domenico T, Walsh I, Martin AJM et al (2012) MobiDB: a comprehensive database of intrinsic protein disorder annotations. Bioinformatics 28:2080–2081

    Article  PubMed  CAS  Google Scholar 

  18. Piovesan D, Tabaro F, Mičetić I et al (2017) DisProt 7.0: a major update of the database of disordered proteins. Nucleic Acids Res 45:D1123–D1124

    Article  CAS  PubMed  Google Scholar 

  19. Fukuchi S, Amemiya T, Sakamoto S et al (2014) IDEAL in 2014 illustrates interaction networks composed of intrinsically disordered proteins and their binding partners. Nucleic Acids Res 42:D320–D325

    Article  CAS  PubMed  Google Scholar 

  20. Fichó E, Reményi I, Simon I et al (2017) MFIB: a repository of protein complexes with mutual folding induced by binding. Bioinformatics 33:3682–3684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Miskei M, Antal C, Fuxreiter M (2017) FuzDB: database of fuzzy complexes, a tool to develop stochastic structure-function relationships for protein complexes and higher-order assemblies. Nucleic Acids Res 45:D228–D235

    Article  CAS  PubMed  Google Scholar 

  22. Piovesan D, Tabaro F, Paladin L et al (2018) MobiDB 3.0: more annotations for intrinsic disorder, conformational diversity and interactions in proteins. Nucleic Acids Res 46:D471–D476

    Article  CAS  PubMed  Google Scholar 

  23. Potenza E, Di Domenico T, Walsh I et al (2015) MobiDB 2.0: an improved database of intrinsically disordered and mobile proteins. Nucleic Acids Res 43:D315–D320

    Article  CAS  PubMed  Google Scholar 

  24. UniProt Consortium (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–D515

    Article  CAS  Google Scholar 

  25. El-Gebali S, Mistry J, Bateman A et al (2019) The Pfam protein families database in 2019. Nucleic Acids Res 47:D427–D432

    Article  CAS  PubMed  Google Scholar 

  26. Lewis TE, Sillitoe I, Dawson N et al (2018) Gene3D: extensive prediction of globular domains in proteins. Nucleic Acids Res 46:D1282

    Article  PubMed  Google Scholar 

  27. Necci M, Piovesan D, Tosatto SCE (2018) Where differences resemble: sequence-feature analysis in curated databases of intrinsically disordered proteins. Database. 2018;2018:bay127. https://doi.org/10.1093/database/bay127

  28. Vilella AJ, Severin J, Ureta-Vidal A et al (2009) EnsemblCompara GeneTrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome Res 19:327–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Piovesan D, Tosatto SCE (2018) Mobi 2.0: an improved method to define intrinsic disorder, mobility and linear binding regions in protein structures. Bioinformatics 34:122–123

    Article  CAS  PubMed  Google Scholar 

  30. Ulrich EL, Akutsu H, Doreleijers JF et al (2008) BioMagResBank. Nucleic Acids Res 36:D402–D408

    Article  CAS  PubMed  Google Scholar 

  31. Martin AJM, Walsh I, Tosatto SCE (2010) MOBI: a web server to define and visualize structural mobility in NMR protein ensembles. Bioinformatics 26:2916–2917

    Article  CAS  PubMed  Google Scholar 

  32. Piovesan D, Minervini G, Tosatto SCE (2016) The RING 2.0 web server for high quality residue interaction networks. Nucleic Acids Res 44:W367–W374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sormanni P, Piovesan D, Heller GT et al (2017) Simultaneous quantification of protein order and disorder. Nat Chem Biol 13:339–342

    Article  CAS  PubMed  Google Scholar 

  34. Camilloni C, De Simone A, Vranken WF et al (2012) Determination of secondary structure populations in disordered states of proteins using nuclear magnetic resonance chemical shifts. Biochemistry 51:2224–2231

    Article  CAS  PubMed  Google Scholar 

  35. Berjanskii MV, Wishart DS (2005) A simple method to predict protein flexibility using secondary chemical shifts. J Am Chem Soc 127:14970–14971

    Article  CAS  PubMed  Google Scholar 

  36. Monzon AM, Rohr CO, Fornasari MS et al (2016) CoDNaS 2.0: a comprehensive database of protein conformational diversity in the native state. Database 2016:baw038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Linding R, Jensen LJ, Diella F et al (2003) Protein disorder prediction: implications for structural proteomics. Structure 11:1453–1459

    Article  CAS  PubMed  Google Scholar 

  38. Walsh I, Martin AJM, Di Domenico T et al (2012) ESpritz: accurate and fast prediction of protein disorder. Bioinformatics 28:503–509

    Article  CAS  PubMed  Google Scholar 

  39. Linding R, Russell RB, Neduva V et al (2003) GlobPlot: exploring protein sequences for globularity and disorder. Nucleic Acids Res 31:3701–3708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dosztányi Z, Csizmok V, Tompa P et al (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21:3433–3434

    Article  PubMed  CAS  Google Scholar 

  41. Yang ZR, Thomson R, McNeil P et al (2005) RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins. Bioinformatics 21:3369–3376

    Article  CAS  PubMed  Google Scholar 

  42. Peng K, Radivojac P, Vucetic S et al (2006) Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 7:208

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Cilia E, Pancsa R, Tompa P et al (2013) From protein sequence to dynamics and disorder with DynaMine. Nat Commun 4:2741

    Article  PubMed  CAS  Google Scholar 

  44. Mészáros B, Simon I, Dosztányi Z (2009) Prediction of protein binding regions in disordered proteins. PLoS Comput Biol 5:e1000376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Piovesan D, Walsh I, Minervini G et al (2017) FELLS: fast estimator of latent local structure. Bioinformatics 33:1889–1891

    Article  CAS  PubMed  Google Scholar 

  46. Wootton JC (1994) Non-globular domains in protein sequences: automated segmentation using complexity measures. Comput Chem 18:269–285

    Article  CAS  PubMed  Google Scholar 

  47. Jones DT, Swindells MB (2002) Getting the most from PSI-BLAST. Trends Biochem Sci 27:161–164

    Article  CAS  PubMed  Google Scholar 

  48. Necci M, Piovesan D, Dosztányi Z et al (2017) MobiDB-lite: fast and highly specific consensus prediction of intrinsic disorder in proteins. Bioinformatics 33:1402–1404

    CAS  PubMed  Google Scholar 

  49. Das RK, Pappu RV (2013) Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proc Natl Acad Sci U S A 110:13392–13397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Peifer M, Rauskolb C, Williams M et al (1991) The segment polarity gene armadillo interacts with the wingless signaling pathway in both embryonic and adult pattern formation. Development 111:1029–1043

    Article  CAS  PubMed  Google Scholar 

  51. Noordermeer J, Klingensmith J, Perrimon N et al (1994) Dishevelled and armadillo act in the wingless signalling pathway in drosophila. Nature 367:80–83

    Article  CAS  PubMed  Google Scholar 

  52. Peifer M, Berg S, Reynolds AB (1994) A repeating amino acid motif shared by proteins with diverse cellular roles. Cell 76:789–791

    Article  CAS  PubMed  Google Scholar 

  53. Kraus C, Liehr T, Hülsken J et al (1994) Localization of the human beta-catenin gene (CTNNB1) to 3p21: a region implicated in tumor development. Genomics 23:272–274

    Article  CAS  PubMed  Google Scholar 

  54. MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huber AH, Nelson WJ, Weis WI (1997) Three-dimensional structure of the armadillo repeat region of beta-catenin. Cell 90:871–882

    Article  CAS  PubMed  Google Scholar 

  56. Xing Y, Takemaru K-I, Liu J et al (2008) Crystal structure of a full-length beta-catenin. Structure 16:478–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wu G, Xu G, Schulman BA et al (2003) Structure of a beta-TrCP1-Skp1-beta-catenin complex: destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase. Mol Cell 11:1445–1456

    Article  CAS  PubMed  Google Scholar 

  58. Radivojac P, Obradovic Z, Smith DK et al (2004) Protein flexibility and intrinsic disorder. Protein Sci 13:71–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schlessinger A, Schaefer C, Vicedo E et al (2011) Protein disorder--a breakthrough invention of evolution? Curr Opin Struct Biol 21:412–418

    Article  CAS  PubMed  Google Scholar 

  60. Ward JJ, Sodhi JS, McGuffin LJ et al (2004) Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol 337:635–645

    Article  CAS  PubMed  Google Scholar 

  61. Brown CJ, Takayama S, Campen AM et al (2002) Evolutionary rate heterogeneity in proteins with long disordered regions. J Mol Evol 55:104–110

    Article  CAS  PubMed  Google Scholar 

  62. Bellay J, Han S, Michaut M et al (2011) Bringing order to protein disorder through comparative genomics and genetic interactions. Genome Biol 12:R14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Uversky VN (2002) What does it mean to be natively unfolded? Eur J Biochem 269:2–12

    Article  CAS  PubMed  Google Scholar 

  64. Vucetic S, Brown CJ, Dunker AK et al (2003) Flavors of protein disorder. Proteins 52:573–584

    Article  CAS  PubMed  Google Scholar 

  65. Walsh I, Giollo M, Di Domenico T et al (2015) Comprehensive large-scale assessment of intrinsic protein disorder. Bioinformatics 31:201–208

    Article  CAS  PubMed  Google Scholar 

  66. UniProt Consortium (2014) Activities at the universal protein resource (UniProt). Nucleic Acids Res 42:D191–D198

    Article  CAS  Google Scholar 

  67. Uversky VN, Dunker AK (2010) Understanding protein non-folding. Biochim Biophys Acta 1804:1231–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yanagiya A, Suyama E, Adachi H et al (2012) Translational homeostasis via the mRNA cap-binding protein, eIF4E. Mol Cell 46:847–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fletcher CM, Wagner G (1998) The interaction of eIF4E with 4E-BP1 is an induced fit to a completely disordered protein. Protein Sci 7:1639–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mader S, Lee H, Pause A et al (1995) The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol Cell Biol 15:4990–4997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kannan S, Lane DP, Verma CS (2016) Long range recognition and selection in IDPs: the interactions of the C-terminus of p53. Sci Rep 6:23750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Noivirt-Brik O, Prilusky J, Sussman JL (2009) Assessment of disorder predictions in CASP8. Proteins 77(Suppl 9):210–216

    Article  CAS  PubMed  Google Scholar 

  73. De Simone A, Cavalli A, S-TD H et al (2009) Accurate random coil chemical shifts from an analysis of loop regions in native states of proteins. J Am Chem Soc 131:16332–16333

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Diana Battistella for helping us with manuscript proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio C. E. Tosatto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Monzon, A.M., Hatos, A., Necci, M., Piovesan, D., Tosatto, S.C.E. (2020). Exploring Protein Intrinsic Disorder with MobiDB. In: Kragelund, B.B., Skriver, K. (eds) Intrinsically Disordered Proteins. Methods in Molecular Biology, vol 2141. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0524-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0524-0_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0523-3

  • Online ISBN: 978-1-0716-0524-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics