Skip to main content

Determining Rg of IDPs from SAXS Data

  • Protocol
  • First Online:
Intrinsically Disordered Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2141))

Abstract

There is a great interest within the research community to understand the structure–function relationship for intrinsically disordered proteins (IDPs); however, the heterogeneous distribution of conformations that IDPs can adopt limits the applicability of conventional structural biology methods. Here, scattering techniques, such as small-angle X-ray scattering, can contribute. In this chapter, we will describe how to make a model-free determination of the radius of gyration by using two different approaches, the Guinier analysis and the pair distance distribution function. The ATSAS package (Franke et al., J Appl Crystallogr 50:1212–1225, 2017) has been used for the evaluation, and throughout the chapter, different examples will be given to illustrate the discussed phenomena, as well as the pros and cons of using the different approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Das RK, Pappu RV (2013) Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proc Natl Acad Sci U S A 110:13392–13397. https://doi.org/10.1073/pnas.1304749110

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hoffmann A, Kane A, Nettels D et al (2007) Mapping protein collapse with single-molecule fluorescence and kinetic synchrotron radiation circular dichroism spectroscopy. Proc Natl Acad Sci U S A 104:105–110. https://doi.org/10.1073/pnas.0604353104

    Article  CAS  PubMed  Google Scholar 

  3. Hofmann H, Soranno A, Borgia A et al (2012) Polymer scaling laws of unfolded and intrinsically disordered proteins quantified with single-molecule spectroscopy. Proc Natl Acad Sci U S A 109:16155–16160. https://doi.org/10.1073/pnas.1207719109

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mao AH, Crick SL, Vitalis A et al (2010) Net charge per residue modulates conformational ensembles of intrinsically disordered proteins. Proc Natl Acad Sci U S A 107:8183–8188. https://doi.org/10.1073/pnas.0911107107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. David G, Perez J (2009) Combined sampler robot and high-performance liquid chromatography: a fully automated system for biological small-angle X-ray scattering experiments at the synchrotron SOLEIL SWING beamline. J Appl Crystallogr 42:892–900. https://doi.org/10.1107/s0021889809029288

    Article  CAS  Google Scholar 

  6. Guinier A (1939) La diffraction des rayons X aux tres petits angles; application a l'etude de phenomenes ultramicroscopiques. Ann Phys 12:161–237

    Article  CAS  Google Scholar 

  7. Kikhney AG, Svergun DI (2015) A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Lett 589:2570–2577. https://doi.org/10.1016/j.febslet.2015.08.027

    Article  CAS  PubMed  Google Scholar 

  8. Putnam CD, Hammel M, Hura GL et al (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys 40:191–285. https://doi.org/10.1017/s0033583507004635

    Article  CAS  PubMed  Google Scholar 

  9. Borgia A, Zheng W, Buholzer K et al (2016) Consistent view of polypeptide chain expansion in chemical denaturants from multiple experimental methods. J Am Chem Soc 138:11714–11726. https://doi.org/10.1021/jacs.6b05917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Receveur-Brechot V, Durand D (2012) How random are intrinsically disordered proteins? A small angle scattering perspective. Curr Protein Pept Sci 13:55–75. https://doi.org/10.2174/138920312799277901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Glatter O (1977) Data evaluation in small-angle scattering - calculation of radial electron-density distribution by means of indirect fourier transformation. Acta Phys Austriaca 47:83–102

    Google Scholar 

  12. Svergun DI (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Crystallogr 25:495–503. https://doi.org/10.1107/s0021889892001663

    Article  CAS  Google Scholar 

  13. Perez J, Vachette P, Russo D et al (2001) Heat-induced unfolding of neocarzinostatin, a small all-beta protein investigated by small-angle X-ray scattering. J Mol Biol 308:721–743. https://doi.org/10.1006/jmbi.2001.4611

    Article  CAS  PubMed  Google Scholar 

  14. Franke D, Petoukhov MV, Konarev PV et al (2017) ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. J Appl Crystallogr 50:1212–1225. https://doi.org/10.1107/s1600576717007786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cragnell C, Durand D, Cabane B et al (2016) Coarse-grained modeling of the intrinsically disordered protein Histatin 5 in solution: Monte Carlo simulations in combination with SAXS. Proteins 84:777–791. https://doi.org/10.1002/prot.25025

    Article  CAS  PubMed  Google Scholar 

  16. Jephthah S, Staby L, Kragelund BB et al (2019) Temperature dependence of IDPs in simulations: what are we missing? J Chem Theory Comput 15:2672–2683. https://doi.org/10.1021/acs.jctc.8b01281

    Article  CAS  PubMed  Google Scholar 

  17. Rieloff E, Tully MD, Skepö M (2019) Assessing the intricate balance of intermolecular interactions upon self-Association of Intrinsically Disordered Proteins. J Mol Biol 431:511–523. https://doi.org/10.1016/j.jmb.2018.11.027

    Article  CAS  PubMed  Google Scholar 

  18. Debye P (1946) Molecular-weight determination by light scattering. J Phys Colloid Chem 51:18–32

    Article  Google Scholar 

  19. Calmettes P, Durand D, Desmadril M et al (1994) How random is a highly denatured protein. Biophys Chem 53:105–113. https://doi.org/10.1016/0301-4622(94)00081-6

    Article  CAS  PubMed  Google Scholar 

  20. Zheng W, Best RB (2018) An extended Guinier analysis for intrinsically disordered proteins. J Mol Biol 430:2540–2553. https://doi.org/10.1016/j.jmb.2018.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Le Guillou JC, Zinn-Justin J (1977) Critical exponents for the n-vector model in three dimensions from field theory. Phys Rev Lett 39:95–98. https://doi.org/10.1103/PhysRevLett.39.95

    Article  Google Scholar 

  22. Zheng W, Zerze GH, Borgia A et al (2018) Inferring properties of disordered chains from FRET transfer efficiencies. J Chem Phys 148:123329. https://doi.org/10.1063/1.5006954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Petoukhov MV, Konarev PV et al (2007) ATSAS 2.1 - towards automated and web-supported small-angle scattering data analysis. J Appl Crystallogr 40:S223–S228. https://doi.org/10.1107/s0021889807002853

    Article  CAS  Google Scholar 

  24. Graewert MA, Jeffries CM (2017) Sample and buffer preparation for SAXS. In: Chaudhuri B, Munoz IG, Qian S, Urban VS (eds) Biological small angle scattering: techniques, strategies and tips. Advances in experimental medicine and biology, vol 1009. Springer, Singapore, pp 11–30

    Chapter  Google Scholar 

  25. Brennich M, Pernot P, Round A (2017) How to analyze and present SAS data for publication. In: Chaudhuri B, Munoz IG, Qian S, Urban VS (eds) Biological small angle scattering: techniques, strategies and tips. Advances in experimental medicine and biology, vol 1009. Springer, Singapore, pp 47–64

    Chapter  Google Scholar 

  26. Grishaev A (2012) Sample preparation, data collection, and preliminary data analysis in biomolecular solution X-ray scattering. Curr Protoc Protein Sci 70:17.14.11–17.14.18. https://doi.org/10.1002/0471140864.ps1714s70

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Mark Tully at the European Synchrotron Radiation Facility (ESRF), Grenoble, France, and Dr. Samuel Lenton at the Division of Theoretical Chemistry, Lund University, Sweden, for valuable comments and proofreading of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Skepö .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rieloff, E., Skepö, M. (2020). Determining Rg of IDPs from SAXS Data. In: Kragelund, B.B., Skriver, K. (eds) Intrinsically Disordered Proteins. Methods in Molecular Biology, vol 2141. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0524-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0524-0_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0523-3

  • Online ISBN: 978-1-0716-0524-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics