Skip to main content

Structural Analyses of Intrinsically Disordered Proteins by Small-Angle X-Ray Scattering

  • Protocol
  • First Online:
Intrinsically Disordered Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2141))

Abstract

Small-angle X-ray scattering (SAXS) is a low-resolution method for the structural characterization of biological macromolecules in solution. Information about the overall structural features provided by SAXS is highly complementary to X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy, which are high-resolution methods. SAXS not only provides the shape, oligomeric state, and quaternary structure of folded proteins and protein complexes but also allows for quantitative analysis of flexible biomolecules. In this chapter, the most relevant SAXS procedures for structural characterization of flexible macromolecules, including intrinsically disordered proteins (IDPs), are presented. The sample requirements for SAXS experiments on protein solutions and the sequence of steps in data collection and processing are described. The use of the advanced data analysis tools to quantitatively characterize flexible proteins is presented in detail. Typical experimental issues and potential problems encountered during SAXS data measurements and analyses are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feigin LA, Svergun DI (1987) Structure analysis by small-angle X-ray and Neutron scattering. Springer Science & Business Media, Berlin

    Google Scholar 

  2. Svergun DI, Koch MHJ (2002) Advances in structure analysis using small-angle scattering in solution. Curr Opin Struct Biol 12:654–660

    CAS  PubMed  Google Scholar 

  3. Putnam CD, Hammel M, Hura GL, Tainer JA (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys 40:191–285

    CAS  PubMed  Google Scholar 

  4. Mertens HDT, Svergun DI (2010) Structural characterization of proteins and complexes using small-angle X-ray solution scattering. J Struct Biol 172:128–141

    CAS  PubMed  Google Scholar 

  5. Jacques DA, Trewhella J (2010) Small-angle scattering for structural biology - expanding the frontier while avoiding the pitfalls. Protein Sci 19:642–657

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Rambo RP, Tainer JA (2013) Super-resolution in solution X-ray scattering and its applications to structural systems biology. Annu Rev Biophys 42:415–441

    CAS  PubMed  Google Scholar 

  7. Tuukkanen AT, Spilotros A, Svergun DI (2017) Progress in small-angle scattering from biological solutions at high-brilliance synchrotrons. IUCrJ 4:518–528

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bernadó P, Shimizu N, Zaccai G et al (2018) Solution scattering approaches to dynamical ordering in biomolecular systems. Biochim Biophys Acta Gen Subj 1862:253–274

    PubMed  Google Scholar 

  9. Svergun DI (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 76:2879–2886

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Franke D, Svergun DI (2009) DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J Appl Crystallogr 42:342–346

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Evrard G, Mareuil F, Bontems F et al (2011) DADIMODO: a program for refining the structure of multidomain proteins and complexes against small-angle scattering data and NMR-derived restraints. J Appl Crystallogr 44:1264–1271

    CAS  Google Scholar 

  12. Petoukhov MV, Svergun DI (2005) Global rigid body modeling of macromolecular complexes against small-angle scattering data. Biophys J 89:1237–1250

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tuukkanen AT, Svergun DI (2014) Weak protein-ligand interactions studied by small-angle X-ray scattering. FEBS J 281:1974–1987

    CAS  PubMed  Google Scholar 

  14. Herranz-Trillo F, Groenning M, van Maarschalkerweerd A et al (2017) Structural analysis of multi-component amyloid systems by Chemometric SAXS data decomposition. Structure 25:5–15

    CAS  PubMed  Google Scholar 

  15. Doniach S (2001) Changes in biomolecular conformation seen by small angle X-ray scattering. Chem Rev 101:1763–1778

    CAS  PubMed  Google Scholar 

  16. Bernadó P, Blackledge M (2010) Proteins in dynamic equilibrium. Nature 468:1046–1048

    PubMed  Google Scholar 

  17. Mylonas E, Hascher A, Bernadó P et al (2008) Domain conformation of tau protein studied by solution small-angle X-ray scattering. Biochemistry 47:10345–10353

    CAS  PubMed  Google Scholar 

  18. Garcia-Pino A, Balasubramanian S, Wyns L et al (2010) Allostery and intrinsic disorder mediate transcription regulation by conditional Cooperativity. Cell 142:101–111

    CAS  PubMed  Google Scholar 

  19. Ribeiro EDA, Pinotsis N, Ghisleni A et al (2014) The structure and regulation of human muscle α-Actinin. Cell 159:1447–1460

    CAS  PubMed Central  Google Scholar 

  20. Yang S, Blachowicz L, Makowski L, Roux B (2010) Multidomain assembled states of Hck tyrosine kinase in solution. Proc Natl Acad Sci U S A 107:15757–15762

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Róycki B, Kim YC, Hummer G (2011) SAXS ensemble refinement of ESCRT-III CHMP3 conformational transitions. Structure 19:109–116

    Google Scholar 

  22. Bernadó P, Svergun DI (2012) Analysis of intrinsically disordered proteins by small-angle X-ray scattering. Methods Mol Biol 896:107–122

    PubMed  Google Scholar 

  23. Receveur-Brechot V, Durand D (2012) How random are intrinsically disordered proteins? A small angle scattering perspective. Curr Protein Pept Sci 13:55–75

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kikhney AG, Svergun DI (2015) A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Lett 589:2570–2577

    CAS  PubMed  Google Scholar 

  25. Kachala M, Valentini E, Svergun DI (2015) Application of SAXS for the structural characterization of IDPs. Adv Exp Med Biol 870:261–289

    CAS  PubMed  Google Scholar 

  26. Cordeiro TN, Herranz-Trillo F, Urbanek A et al (2017) Small-angle scattering studies of intrinsically disordered proteins and their complexes. Curr Opin Struct Biol 42:15–23

    CAS  PubMed  Google Scholar 

  27. Franke D, Petoukhov MV, Konarev PV et al (2017) ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. J Appl Crystallogr 50:1212–1225

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hopkins JB, Gillilan RE, Skou S (2017) BioXTAS RAW: improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis. J Appl Crystallogr 50:1545–1553

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Brookes E, Pérez J, Cardinali B et al (2013) Fibrinogen species as resolved by HPLC-SAXS data processing within the UltraScan solution Modeler (US-SOMO) enhanced SAS module. J Appl Crystallogr 46:1823–1833

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Brookes E, Vachette P, Rocco M, Pérez J (2016) US-SOMO HPLC-SAXS module: dealing with capillary fouling and extraction of pure component patterns from poorly resolved SEC-SAXS data. J Appl Crystallogr 49:1827–1841

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Jeffries CM, Graewert MA, Blanchet CE et al (2016) Preparing monodisperse macromolecular samples for successful biological small-angle X-ray and neutron-scattering experiments. Nat Protoc 11:2122–2153

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mathew E, Mirza A, Menhart N (2004) Liquid-chromatography-coupled SAXS for accurate sizing of aggregating proteins. J Synchrotron Radiat 11:314–318

    CAS  PubMed  Google Scholar 

  33. Pérez J, Nishino Y (2012) Advances in X-ray scattering: from solution SAXS to achievements with coherent beams. Curr Opin Struct Biol 22:670–678

    PubMed  Google Scholar 

  34. Graewert MA, Franke D, Jeffries CM et al (2015) Automated pipeline for purification, biophysical and X-ray analysis of biomacromolecular solutions. Sci Rep 5:10734

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Vestergaard B (2016) Analysis of biostructural changes, dynamics, and interactions - small-angle X-ray scattering to the rescue. Arch Biochem Biophys 602:69–79

    CAS  PubMed  Google Scholar 

  36. Round AR, Franke D, Moritz S et al (2008) Automated sample-changing robot for solution scattering experiments at the EMBL Hamburg SAXS station X33. J Appl Crystallogr 41:913–917

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hura GL, Menon AL, Hammel M et al (2009) Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat Methods 6:606–612

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shkumatov AV, Chinnathambi S, Mandelkow E, Svergun DI (2011) Structural memory of natively unfolded tau protein detected by small-angle X-ray scattering. Proteins 79:2122–2131

    CAS  PubMed  Google Scholar 

  39. Bucciarelli S, Midtgaard SR, Pedersen MN et al (2018) Size-exclusion chromatography small-angle X-ray scattering of water soluble proteins on a laboratory instrument. J Appl Crystallogr 51:1623–1632

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Panjkovich A, Svergun DI (2018) CHROMIXS: automatic and interactive analysis of chromatography-coupled small-angle X-ray scattering data. Bioinformatics 34:1944–1946

    CAS  PubMed  Google Scholar 

  41. Franke D, Jeffries CM, Svergun DI (2015) Correlation map, a goodness-of-fit test for one-dimensional X-ray scattering spectra. Nat Methods 12:419–422

    CAS  PubMed  Google Scholar 

  42. Bernadó P (2010) Effect of interdomain dynamics on the structure determination of modular proteins by small-angle scattering. Eur Biophys J 39:769–780

    PubMed  Google Scholar 

  43. Le Guillou JC, Zinn-Justin J (1977) Critical exponents for the n-vector model in three dimensions from field theory. Phys Rev Lett 39:95–98

    Google Scholar 

  44. Kohn JE, Millett IS, Jacob J et al (2004) Random-coil behavior and the dimensions of chemically unfolded proteins. Proc Natl Acad Sci U S A 101:12491–12496

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bernadó P, Blackledge M (2009) A self-consistent description of the conformational behavior of chemically denatured proteins from NMR and small angle scattering. Biophys J 97:2839–2845

    PubMed  PubMed Central  Google Scholar 

  46. Riback JA, Bowman MA, Zmyslowski AM et al (2017) Innovative scattering analysis shows that hydrophobic disordered proteins are expanded in water. Science 358:238–241

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Svergun DI (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Crystallogr 25:495–503

    CAS  Google Scholar 

  48. Bernadó P, Mylonas E, Petoukhov MV et al (2007) Structural characterization of flexible proteins using small-angle X-ray scattering. J Am Chem Soc 129:5656–5664

    PubMed  Google Scholar 

  49. Tria G, Mertens HDT, Kachala M, Svergun DI (2015) Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering. IUCrJ 2:207–217

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Pelikan M, Hura GL, Hammel M (2009) Structure and flexibility within proteins as identified through small angle X-ray scattering. Gen Physiol Biophys 28:174–189

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lira-Navarrete E, de las Rivas M, Compañón I et al (2015) Dynamic interplay between catalytic and lectin domains of GalNAc-transferases modulates protein O-glycosylation. Nat Commun 6:6937

    CAS  PubMed  Google Scholar 

  52. Calçada EO, Korsak M, Kozyreva T (2015) Recombinant intrinsically disordered proteins for NMR: tips and tricks. Adv Exp Med Biol 870:187–213

    PubMed  Google Scholar 

  53. Garrison WM (1987) Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins. Chem Rev 87:381–398

    CAS  Google Scholar 

  54. Kuwamoto S, Akiyama S, Fujisawa T (2004) Radiation damage to a protein solution, detected by synchrotron X-ray small-angle scattering: dose-related considerations and suppression by cryoprotectants. J Synchrotron Radiat 11:462–468

    CAS  PubMed  Google Scholar 

  55. Jeffries CM, Graewert MA, Svergun DI, Blanchet CE (2015) Limiting radiation damage for high-brilliance biological solution scattering: practical experience at the EMBL P12 beamline PETRAIII. J Synchrotron Radiat 22:273–279

    CAS  PubMed  Google Scholar 

  56. Akabayov SR, Akabayov B, Richardson CC, Wagner G (2013) Molecular crowding enhanced ATPase activity of the RNA helicase eIF4A correlates with compaction of its quaternary structure and association with eIF4G. J Am Chem Soc 135:10040–10047

    CAS  PubMed  Google Scholar 

  57. Kilburn D, Roh JH, Guo L et al (2010) Molecular crowding stabilizes folded RNA structure by the excluded volume effect. J Am Chem Soc 132:8690–8696

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Akabayov B, Akabayov SR, Lee S-J et al (2013) Impact of macromolecular crowding on DNA replication. Nat Commun 4:1615

    PubMed  Google Scholar 

  59. Borgia A, Zheng W, Buholzer K et al (2016) Consistent view of polypeptide chain expansion in chemical denaturants from multiple experimental methods. J Am Chem Soc 138:11714–11726

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zheng W, Best RB (2018) An extended Guinier analysis for intrinsically disordered proteins. J Mol Biol 430:2540–2553

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Heller WT (2005) Influence of multiple well defined conformations on small-angle scattering of proteins in solution. Acta Crystallogr D Biol Crystallogr 61:33–44

    PubMed  Google Scholar 

  62. Bernadó P, Blanchard L, Timmins P et al (2005) A structural model for unfolded proteins from residual dipolar couplings and small-angle x-ray scattering. Proc Natl Acad Sci U S A 102:17002–17007

    PubMed  PubMed Central  Google Scholar 

  63. Ozenne V, Bauer F, Salmon L et al (2012) Flexible-meccano: a tool for the generation of explicit ensemble descriptions of intrinsically disordered proteins and their associated experimental observables. Bioinformatics 28:1463–1470

    CAS  PubMed  Google Scholar 

  64. Estaña A, Sibille N, Delaforge E et al (2019) Realistic ensemble models of intrinsically disordered proteins using a structure-encoding coil database. Structure 27:381–391.e2

    PubMed  Google Scholar 

  65. Curtis JE, Raghunandan S, Nanda H, Krueger S (2012) SASSIE: a program to study intrinsically disordered biological molecules and macromolecular ensembles using experimental scattering restraints. Comput Phys Commun 183:382–389

    CAS  Google Scholar 

  66. Robustelli P, Piana S, Shaw DE (2018) Developing a molecular dynamics force field for both folded and disordered protein states. Proc Natl Acad Sci U S A 115:E4758–E4766

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Arbesú M, Maffei M, Cordeiro TN et al (2017) The unique domain forms a fuzzy Intramolecular complex in Src family kinases. Structure 25:630–640.e4

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Labex EpiGenMed, an “Investissements d’Avenir” program (ANR-10-LABX-12-01). The CBS is a member of France-BioImaging (FBI) and the French Infrastructure for Integrated Structural Biology (FRISBI), two national infrastructures supported by the French National Research Agency (ANR-10-INBS-04-01 and ANR-10-INBS-05, respectively). D.S. acknowledges support by iNEXT, grant number 653706, funded by the Horizon 2020 program of the European Union.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amin Sagar or Pau Bernadó .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sagar, A., Svergun, D., Bernadó, P. (2020). Structural Analyses of Intrinsically Disordered Proteins by Small-Angle X-Ray Scattering. In: Kragelund, B.B., Skriver, K. (eds) Intrinsically Disordered Proteins. Methods in Molecular Biology, vol 2141. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0524-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0524-0_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0523-3

  • Online ISBN: 978-1-0716-0524-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics