Skip to main content

Protocols for Tn-seq Analyses in the Group A Streptococcus

  • Protocol
  • First Online:
Group A Streptococcus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2136))

  • 1531 Accesses

Abstract

Transposon-sequencing (Tn-seq) has revolutionized forward-genetic analyses to study genotype–phenotype associations and interrogate bacterial cell physiology. The Tn-seq approach allows the en masse monitoring of highly complex mutant libraries, leveraging massive parallel DNA sequencing as a means to characterize the composition of these mutant pools on a genome-scale with unprecedented nucleotide-level high resolution. In this chapter, we present step-by-step protocols for Tn-seq analyses in the human pathogen Streptococcus pyogenes (Group A Streptococcus or GAS) using the mariner-based Krmit transposon. We detail how to generate highly complex Krmit mutant libraries in GAS and the en masse production of Krmit insertion tags for Illumina sequencing of the transposon–genome junctions for Tn-seq analyses. Most of the protocols presented here were developed and implemented using the S. pyogenes M1T1 serotype clinical isolate 5448, but they have been successfully applied to multiple GAS serotypes as well as other pathogenic Streptococci.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Opijnen T, Bodi KL, Camilli A (2009) Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods 6(10):767–772. https://doi.org/10.1038/nmeth.1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gawronski JD, Wong SM, Giannoukos G et al (2009) Tracking insertion mutants within libraries by deep sequencing and a genome-wide screen for Haemophilus genes required in the lung. Proc Natl Acad Sci U S A 106(38):16422–16427. https://doi.org/10.1073/pnas.0906627106

    Article  PubMed  PubMed Central  Google Scholar 

  3. Akerley BJ, Rubin EJ, Camilli A et al (1998) Systematic identification of essential genes by in vitro mariner mutagenesis. Proc Natl Acad Sci U S A 95(15):8927–8932. https://doi.org/10.1073/pnas.95.15.8927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Goodman AL, McNulty NP, Zhao Y et al (2009) Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6(3):279–289. https://doi.org/10.1016/j.chom.2009.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Langridge GC, Phan MD, Turner DJ et al (2009) Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants. Genome Res 19(12):2308–2316. https://doi.org/10.1101/gr.097097.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van Opijnen T, Camilli A (2013) Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. Nat Rev Microbiol 11(7):435–442. https://doi.org/10.1038/nrmicro3033

    Article  CAS  PubMed  Google Scholar 

  7. Barquist L, Boinett CJ, Cain AK (2013) Approaches to querying bacterial genomes with transposon-insertion sequencing. RNA Biol 10(7):1161–1169. https://doi.org/10.4161/rna.24765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kwon YM, Ricke SC, Mandal RK (2016) Transposon sequencing: methods and expanding applications. Appl Microbiol Biotechnol 100(1):31–43. https://doi.org/10.1007/s00253-015-7037-8

    Article  CAS  PubMed  Google Scholar 

  9. Le Breton Y, Belew AT, Valdes KM et al (2015) Essential genes in the Core genome of the human pathogen Streptococcus pyogenes. Sci Rep 5:9838. https://doi.org/10.1038/srep09838

    Article  PubMed  PubMed Central  Google Scholar 

  10. Le Breton Y, Belew AT, Freiberg JA et al (2017) Genome-wide discovery of novel M1T1 group a streptococcal determinants important for fitness and virulence during soft-tissue infection. PLoS Pathog 13(8):e1006584. https://doi.org/10.1371/journal.ppat.1006584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. van der Beek SL, Le Breton Y, Ferenbach AT et al (2015) GacA is essential for group a streptococcus and defines a new class of monomeric dTDP-4-dehydrorhamnose reductases (RmlD). Mol Microbiol 98(5):946–962. https://doi.org/10.1111/mmi.13169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. van Hensbergen VP, Movert E, de Maat V et al (2018) Streptococcal Lancefield polysaccharides are critical cell wall determinants for human group IIA secreted phospholipase A2 to exert its bactericidal effects. PLoS Pathog 14(10):e1007348. https://doi.org/10.1371/journal.ppat.1007348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Edgar RJ, van Hensbergen VP, Ruda A et al (2019) Discovery of glycerol phosphate modification on streptococcal rhamnose polysaccharides. Nat Chem Biol 15(5):463–471. https://doi.org/10.1038/s41589-019-0251-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Le Breton Y, McIver KS (2013) Genetic manipulation of Streptococcus pyogenes (the group a streptococcus, GAS). Curr Protoc Microbiol 30:9D.3.1–9D.3.29. https://doi.org/10.1002/9780471729259.mc09d03s30

    Article  Google Scholar 

  15. Le Breton Y, Mistry P, Valdes KM et al (2013) Genome-wide identification of genes required for fitness of group a streptococcus in human blood. Infect Immun 81(3):862–875. https://doi.org/10.1128/IAI.00837-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu L, Charbonneau ARL, Waller AS et al (2017) Novel genes required for the fitness of Streptococcus pyogenes in human saliva. mSphere 2(6):e00460–e00417. https://doi.org/10.1128/mSphereDirect.00460-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu L, Olsen RJ, Beres SB et al (2019) Gene fitness landscape of group a streptococcus during necrotizing myositis. J Clin Invest 129(2):887–901. https://doi.org/10.1172/JCI124994

    Article  PubMed  PubMed Central  Google Scholar 

  18. Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260(3):289–298. https://doi.org/10.1006/jmbi.1996.0399

    Article  CAS  PubMed  Google Scholar 

  19. Aziz RK, Pabst MJ, Jeng A et al (2004) Invasive M1T1 group a streptococcus undergoes a phase-shift in vivo to prevent proteolytic degradation of multiple virulence factors by SpeB. Mol Microbiol 51(1):123–134. https://doi.org/10.1046/j.1365-2958.2003.03797

    Article  CAS  PubMed  Google Scholar 

  20. van Opijnen T, Lazinski DW, Camilli A (2014) Genome-wide fitness and genetic interactions determined by Tn-seq, a high-throughput massively parallel sequencing method for microorganisms. Curr Protoc Mol Biol 106:7.16.1–17.16.24. https://doi.org/10.1002/0471142727.mb0716s106

    Article  Google Scholar 

  21. Patel RK, Jain M (2012) NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 7(2):e30619. https://doi.org/10.1371/journal.pone.0030619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stajich JE, Block D, Boulez K et al (2002) The Bioperl toolkit: Perl modules for the life sciences. Genome Res 12(10):1611–1618. https://doi.org/10.1101/gr.361602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12

    Article  Google Scholar 

  24. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Langmead B (2010) Aligning short sequencing reads with bowtie. Curr Protoc Bioinformatics . Chapter 11:Unit 11.7. https://doi.org/10.1002/0471250953.bi1107s32

  26. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25. https://doi.org/10.1186/gb-2009-10-3-r25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li H, Handsaker B, Wysoker A, Fennell T et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11(10):R106. https://doi.org/10.1186/gb-2010-11-10-r106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Burby PE, Nye TM, Schroeder JW, Simmons LA (2017) Implementation and data analysis of Tn-seq, whole-genome Resequencing, and single-molecule real-time sequencing for bacterial genetics. J Bacteriol 199(1):e00560–e00516. https://doi.org/10.1128/JB.00560-16

    Article  CAS  PubMed  Google Scholar 

  31. DeJesus MA, Ioerger TR (2013) A hidden Markov model for identifying essential and growth-defect regions in bacterial genomes from transposon insertion sequencing data. BMC Bioinformatics 14:303. https://doi.org/10.1186/1471-2105-1114-1303

    Article  PubMed  PubMed Central  Google Scholar 

  32. DeJesus MA, Zhang YJ, Sassetti CM et al (2013) Bayesian analysis of gene essentiality based on sequencing of transposon insertion libraries. Bioinformatics 29(6):695–703. https://doi.org/10.1093/bioinformatics/btt043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McCoy KM, Antonio ML, van Opijnen T (2017) MAGenTA; a galaxy implemented tool for complete Tn-Seq analysis and data visualization. Bioinformatics 33(17):2781–2783. https://doi.org/10.1093/bioinformatics/btx320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Solaimanpour S, Sarmiento F, Mrázek J (2015) Tn-seq explorer: a tool for analysis of high-throughput sequencing data of transposon mutant libraries. PLoS One 10(5):e0126070. https://doi.org/10.1371/journal.pone.0126070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zomer A, Burghout P, Bootsma HJ et al (2012) ESSENTIALS: software for rapid analysis of high throughput transposon insertion sequencing data. PLoS One 7(8):e43012. https://doi.org/10.1371/journal.pone.0043012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Material has been reviewed by the Walter Reed Army Institute of Research. There is no objection to its presentation and/or publication. The opinions and assertions contained herein are the private views of the author and are not to be construed as official or as reflecting true views of the Department of the Army or the Department of Defense. This work was supported by grants (AI047928 and AI094773) from the National Institute of Allergy and Infectious Diseases (NIAID) at the National Institutes of Health (NIH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoann Le Breton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Le Breton, Y., Belew, A.T., McIver, K.S. (2020). Protocols for Tn-seq Analyses in the Group A Streptococcus. In: Proft, T., Loh, J. (eds) Group A Streptococcus. Methods in Molecular Biology, vol 2136. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0467-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0467-0_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0466-3

  • Online ISBN: 978-1-0716-0467-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics