Skip to main content

Closed-Tube Multiplex Real-Time PCR for the Detection of Group A Streptococcal Superantigens

  • Protocol
  • First Online:
Group A Streptococcus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2136))

  • 1066 Accesses

Abstract

Conventional PCR techniques are laborious and usually not suited for fast screening of large sample numbers in a clinical or research setting. Using this closed-tube multiplex real-time PCR, the presence of all 11 Streptococcus pyogenes superantigen (SAg) genes can be rapidly and accurately characterized. Identifying whether a strain contains a SAg can be done within 4 h compared to conventional methods which would take 11 times as long. This method provides an excellent diagnostic tool as well as a screening tool to help researchers clarify the role of SAgs in S. pyogenes infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Imöhl M, Fitzner C, Perniciaro S et al (2017) Epidemiology and distribution of 10 superantigens among invasive Streptococcus pyogenes disease in Germany from 2009 to 2014. PLoS One 12(7):e0180757. https://doi.org/10.1371/journal.pone.0180757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lintges M, van der Linden M, Hilgers R-D et al (2010) Superantigen genes are more important than the emm type for the invasiveness of group a streptococcus infection. J Infect Dis 202(1):20–28. https://doi.org/10.1086/653082

    Article  PubMed  Google Scholar 

  3. Actor JK (2012) Elsevier’s integrated review. In: Immunology and microbiology: 5—role of major histocompatibility complex in the immune response, Elsevier’s integrated series, 2nd edn. Elsevier/Saunders, Philadelphia, PA

    Google Scholar 

  4. Beres SB, Sylva GL, Barbian KD et al (2002) Genome sequence of a serotype M3 strain of group A Streptococcus: phage-encoded toxins, the high-virulence phenotype, and clone emergence. Proc Natl Acad Sci U S A 99(15):10078–10083. https://doi.org/10.1073/pnas.152298499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bessen DE, Izzo MW, Fiorentino TR et al (1999) Genetic linkage of exotoxin alleles and emm gene markers for tissue tropism in group a streptococci. J Infect Dis 179(3):627–636. https://doi.org/10.1086/314631

    Article  CAS  PubMed  Google Scholar 

  6. Ferretti JJ, McShan WM, Ajdic D et al (2001) Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc Natl Acad Sci U S A 98(8):4658–4663. https://doi.org/10.1073/pnas.071559398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Igwe EI, Shewmaker PL, Facklam RR et al (2003) Identification of superantigen genes speM, ssa, and smeZ in invasive strains of beta-hemolytic group C and G streptococci recovered from humans. FEMS Microbiol Lett 229(2):259–264. https://doi.org/10.1016/S0378-1097(03)00842-5

    Article  CAS  PubMed  Google Scholar 

  8. Kamezawa Y, Nakahara T, Nakano S et al (1997) Streptococcal mitogenic exotoxin Z, a novel acidic superantigenic toxin produced by a T1 strain of Streptococcus pyogenes. Infect Immun 65(9):3828–3833

    Article  CAS  Google Scholar 

  9. McCormick JK, Pragman AA, Stolpa JC et al (2001) Functional characterization of streptococcal pyrogenic exotoxin J, a novel Superantigen. Infect Immun 69(3):1381–1388. https://doi.org/10.1128/IAI.69.3.1381-1388.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Proft T, Moffatt SL, Berkahn CJ et al (1999) Identification and characterization of novel Superantigens from Streptococcus pyogenes. J Exp Med 189(1):89–102. https://doi.org/10.1084/jem.189.1.89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Proft T, Webb PD, Handley V et al (2003) Two novel Superantigens found in both group a and group C streptococcus. Infect Immun 71(3):1361–1369. https://doi.org/10.1128/IAI.71.3.1361-1369.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Proft T, Arcus VL, Handley V et al (2001) Immunological and biochemical characterization of streptococcal pyrogenic exotoxins I and J (SPE-I and SPE-J) from Streptococcus pyogenes. J Immunol 166(11):6711–6719. https://doi.org/10.4049/jimmunol.166.11.6711

    Article  CAS  PubMed  Google Scholar 

  13. Smoot LM, McCormick JK, Smoot JC et al (2002) Characterization of two novel pyrogenic toxin Superantigens made by an acute rheumatic fever clone of Streptococcus pyogenes associated with multiple disease outbreaks. Infect Immun 70(12):7095–7104. https://doi.org/10.1128/IAI.70.12.7095-7104.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baker M, Gutman DM, Papageorgiou AC et al (2001) Structural features of a zinc binding site in the superantigen streptococcal pyrogenic exotoxin a (SpeA1): implications for MHC class II recognition. Protein Sci 10(6):1268–1273. https://doi.org/10.1110/ps.330101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nelson K, Schlievert PM, Selander RK et al (1991) Characterization and clonal distribution of four alleles of the speA gene encoding pyrogenic exotoxin a (scarlet fever toxin) in Streptococcus pyogenes. J Exp Med 174(5):1271–1274

    Article  CAS  Google Scholar 

  16. Proft T, Moffatt SL, Weller KD et al (2000) The streptococcal Superantigen Smez exhibits wide allelic variation, mosaic structure, and significant antigenic variation. J Exp Med 191(10):1765–1776. https://doi.org/10.1084/jem.191.10.1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fagin U, Hahn U, Grötzinger J et al (1997) Exclusion of bioactive contaminations in Streptococcus pyogenes erythrogenic toxin a preparations by recombinant expression in Escherichia coli. Infect Immun 65(11):4725–4733

    Article  CAS  Google Scholar 

  18. Lintges M, Arlt S, Uciechowski P et al (2007) A new closed-tube multiplex real-time PCR to detect eleven superantigens of Streptococcus pyogenes identifies a strain without superantigen activity. Int J Med Microbiol 297(6):471–478. https://doi.org/10.1016/j.ijmm.2007.03.015

    Article  CAS  PubMed  Google Scholar 

  19. Schmitz F-J, Beyer A, Charpentier E et al (2003) Toxin-gene profile heterogeneity among endemic invasive European group a streptococcal isolates. J Infect Dis 188(10):1578–1586. https://doi.org/10.1086/379230

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Rink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gammoh, N.Z., Rink, L. (2020). Closed-Tube Multiplex Real-Time PCR for the Detection of Group A Streptococcal Superantigens. In: Proft, T., Loh, J. (eds) Group A Streptococcus. Methods in Molecular Biology, vol 2136. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0467-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0467-0_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0466-3

  • Online ISBN: 978-1-0716-0467-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics