Skip to main content

Encapsulating Quantum Dots in Lipid–PEG Micelles and Subsequent Copper-Free Click Chemistry Bioconjugation

  • Protocol
  • First Online:
Quantum Dots

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2135))

Abstract

The utility of quantum dots (QDs) for biological applications is predicated on stably dispersing the particles in aqueous media. During transfer from apolar organic solvents to water, the optical properties of the fluorescent nanoparticles must be maintained; additionally, the resulting colloid should be monodisperse and stable against aggregation. Furthermore, the hydrophilic coating should confer functional groups or conjugation handles to the QDs, as biofunctionalization is often critical to biosensing and bioimaging applications. Micelle encapsulation is an excellent technique for conferring hydrophilicity and conjugation handles to QDs. One interesting conjugation handle that can easily be added to the QDs is an azide group, which conjugates to strained alkynes via strain promoted azide–alkyne cycloaddition (SPAAC) reactions. SPAAC, or copper-free click chemistry, utilizes very mild reaction conditions, involves reactive groups that are bio-orthogonal, and is nearly quantitative. Micelle encapsulation is also very mild and preserves the optical properties of the QDs nearly perfectly. The combination of these approaches comprises a mild, effective, and straightforward approach to preparing functionalized QDs for biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carion O, Mahler B, Pons T, Dubertret B (2007) Synthesis, encapsulation, purification and coupling of single quantum dots in phospholipid micelles for their use in cellular and in vivo imaging. Nat Protoc 2:2383

    Article  CAS  Google Scholar 

  2. Åkerman ME et al (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci 99:12617–12621

    Article  Google Scholar 

  3. Jamieson T et al (2007) Biological applications of quantum dots. Biomaterials 28:4717–4732

    Article  CAS  Google Scholar 

  4. Karakoti AS et al (2015) Surface functionalization of quantum dots for biological applications. Adv Colloid Interf Sci 215:28–45

    Article  CAS  Google Scholar 

  5. Choi HS et al (2007) Renal clearance of quantum dots. Nat Biotechnol 25:1165

    Article  CAS  Google Scholar 

  6. Kumar R et al (2012) In vitro evaluation of theranostic polymeric micelles for imaging and drug delivery in cancer. Theranostics 2:714

    Article  CAS  Google Scholar 

  7. Dubois F et al (2007) A versatile strategy for quantum dot ligand exchange. J Am Chem Soc 129:482–483

    Article  CAS  Google Scholar 

  8. Guo Y et al (2016) Compact, polyvalent mannose quantum dots as sensitive, ratiometric FRET probes for multivalent protein–ligand interactions. Angew Chem Int Ed 55:4738–4742

    Article  CAS  Google Scholar 

  9. Kang SJ et al (2018) Anti-EGFR lipid micellar nanoparticles co-encapsulating quantum dots and paclitaxel for tumor-targeted theranosis. Nanoscale 10:19338–19350

    Article  CAS  Google Scholar 

  10. Hu R et al (2012) PEGylated phospholipid micelle-encapsulated near-infrared PbS quantum dots for in vitro and in vivo bioimaging. Theranostics 2:723

    Article  CAS  Google Scholar 

  11. Garcia-Cortes M et al (2017) Capping of Mn-doped ZnS quantum dots with DHLA for their stabilization in aqueous media: determination of the nanoparticle number concentration and surface ligand density. Langmuir 33:6333–6341

    Article  CAS  Google Scholar 

  12. Liu D, Snee PT (2010) Water-soluble semiconductor nanocrystals cap exchanged with metalated ligands. ACS Nano 5:546–550

    Article  Google Scholar 

  13. Salerno G et al (2018) A small heterobifunctional ligand provides stable and water dispersible core–shell CdSe/ZnS quantum dots (QDs). Nanoscale 10:19720–19732

    Article  CAS  Google Scholar 

  14. Wu Y-T et al (2018) Quantum dot–based FRET immunoassay for HER2 using ultrasmall affinity proteins. Small 14:1802266

    Article  Google Scholar 

  15. Chern M et al (2017) Shell thickness effects on quantum dot brightness and energy transfer. Nanoscale 9:16446–16458

    Article  CAS  Google Scholar 

  16. Chern M et al (2018) Sensing with photoluminescent semiconductor quantum dots. Methods Appl Fluores

    Google Scholar 

  17. Gao X et al (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969

    Article  CAS  Google Scholar 

  18. Dennis AM et al (2010) Surface ligand effects on metal-affinity coordination to quantum dots: implications for nanoprobe self-assembly. Bioconjug Chem 21:1160–1170

    Article  CAS  Google Scholar 

  19. Karakoti AS et al (2011) PEGylated inorganic nanoparticles. Angew Chem Int Ed 50(9):1980–1994

    Article  CAS  Google Scholar 

  20. Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomed 1:297

    Article  CAS  Google Scholar 

  21. Schöttler S et al (2016) Protein adsorption is required for stealth effect of poly (ethylene glycol)-and poly (phosphoester)-coated nanocarriers. Nat Nanotechnol 11:372

    Article  Google Scholar 

  22. Daou TJ et al (2009) Effect of poly (ethylene glycol) length on the in vivo behavior of coated quantum dots. Langmuir 25:3040–3044

    Article  CAS  Google Scholar 

  23. Li H, Aneja R, Chaiken I (2013) Click chemistry in peptide-based drug design. Molecules 18:9797–9817

    Article  CAS  Google Scholar 

  24. Becer CR, Hoogenboom R, Schubert US (2009) Click chemistry beyond metal-catalyzed cycloaddition. Angew Chem Int Ed 48:4900–4908

    Article  CAS  Google Scholar 

  25. Brennan JL et al (2006) Bionanoconjugation via click chemistry: the creation of functional hybrids of lipases and gold nanoparticles. Bioconjug Chem 17:1373–1375

    Article  CAS  Google Scholar 

  26. Wu C et al (2010) Ultrabright and bioorthogonal labeling of cellular targets using semiconducting polymer dots and click chemistry. Angew Chem Int Ed 49:9436–9440

    Article  CAS  Google Scholar 

  27. Xu X et al (2010) Colorimetric Cu2+ detection using DNA-modified gold-nanoparticle aggregates as probes and click chemistry. Small 6:623–626

    Article  CAS  Google Scholar 

  28. Thorek DLJ, Elias e R, Tsourkas A (2009) Comparative analysis of nanoparticle-antibody conjugations: carbodiimide versus click chemistry. Mol Imaging 8:7290–2009

    Article  Google Scholar 

  29. Koo H et al (2012) Bioorthogonal copper-free click chemistry in vivo for tumor-targeted delivery of nanoparticles. Angew Chem Int Ed 51(47):11836–11840

    Article  CAS  Google Scholar 

  30. Schieber C et al (2012) Conjugation of transferrin to azide-modified CdSe/ZnS core–shell quantum dots using cyclooctyne click chemistry. Angew Chem Int Ed 51:10523–10527

    Article  CAS  Google Scholar 

  31. Grazon C, Chern M, Ward K et al (2019) A versatile and accessible polymer coating for functionalizable zwitterionic quantum dots with high DNA grafting efficiency. Chem Commun 55(74):11067–11070

    Google Scholar 

  32. Reiss P, Protiere M, Li L (2009) Core/shell semiconductor nanocrystals. Small 5:154–168

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allison M. Dennis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Saeboe, A.M., Kays, J.C., Dennis, A.M. (2020). Encapsulating Quantum Dots in Lipid–PEG Micelles and Subsequent Copper-Free Click Chemistry Bioconjugation. In: Fontes, A., Santos, B. (eds) Quantum Dots. Methods in Molecular Biology, vol 2135. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0463-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0463-2_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0462-5

  • Online ISBN: 978-1-0716-0463-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics