Skip to main content

Multifunctional Nanodelivery Platform for Maximizing Nucleic Acids Combination Therapy

  • Protocol
  • First Online:
RNA Interference and CRISPR Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2115))

Abstract

The silencing of an oncogene with a small interfering RNA (siRNA) is a promising way for cancer therapy. Its efficacy can be further enhanced by integrating with other therapeutics; however, transporting siRNA and other active ingredients to the same location at the same time is challenging. Here, we report a novel multifunctional nanodelivery platform by sequentially layering several functional ingredients, such as siRNAs, microRNAs, peptides, and targeting ligands, onto a core through charge–charge interaction. The prepared nanovectors effectively and programmably delivered multiple active components to maximize therapeutic combination with minimal off-targeting effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  CAS  Google Scholar 

  2. Bumcrot D, Manoharan M, Koteliansky V, Sah DW (2006) RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol 2:711–719

    Article  CAS  Google Scholar 

  3. Burnett JC, Rossi JJ (2012) RNA-based therapeutics: current progress and future prospects. Chem Biol 19:60–71

    Article  CAS  Google Scholar 

  4. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355

    Article  CAS  Google Scholar 

  5. Garzon R, Marcucci G, Croce CM (2010) Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 9:775–789

    Article  CAS  Google Scholar 

  6. Conde J, Artzi N (2015) Are RNAi and miRNA therapeutics truly dead? Trends Biotechnol 33:141–144

    Article  CAS  Google Scholar 

  7. Lee SK, Han MS, Asokan S, Tung CH (2011) Effective gene silencing by multilayered siRNA-coated gold nanoparticles. Small 7:364–370

    Article  CAS  Google Scholar 

  8. Peyratout CS, Dahne L (2004) Tailor-made polyelectrolyte microcapsules: from multilayers to smart containers. Angew Chem Int Ed Engl 43:3762–3783

    Article  CAS  Google Scholar 

  9. Jewell CM, Lynn DM (2008) Multilayered polyelectrolyte assemblies as platforms for the delivery of DNA and other nucleic acid-based therapeutics. Adv Drug Deliv Rev 60:979–999

    Article  CAS  Google Scholar 

  10. Reum N, Fink-Straube C, Klein T, Hartmann RW, Lehr CM, Schneider M (2010) Multilayer coating of gold nanoparticles with drug-polymer coadsorbates. Langmuir 26:16901–16908

    Article  CAS  Google Scholar 

  11. Chanana M, Gliozzi A, Diaspro A, Chodnevskaja I, Huewel S, Moskalenko V et al (2005) Interaction of polyelectrolytes and their composites with living cells. Nano Lett 5:2605–2612

    Article  CAS  Google Scholar 

  12. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  13. Jans H, Jans K, Lagae L, Borghs G, Maes G, Huo Q (2010) Poly(acrylic acid)-stabilized colloidal gold nanoparticles: synthesis and properties. Nanotechnology 21:455702

    Article  Google Scholar 

  14. Liz-Marzan LM (2006) Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22:32–41

    Article  CAS  Google Scholar 

  15. Ramchandani D, Lee SK, Yomtoubian S, Han MS, Tung CH, Mittal V (2019) Nanoparticle delivery of miR-708 mimetic impairs breast cancer metastasis. Mol Cancer Ther 18:579–591

    Article  CAS  Google Scholar 

  16. Ryu S, McDonnell K, Choi H, Gao D, Hahn M, Joshi N et al (2013) Suppression of miRNA-708 by polycomb group promotes metastases by calcium-induced cell migration. Cancer Cell 23:63–76

    Article  CAS  Google Scholar 

  17. Wang S, Shi Z, Liu W, Jules J, Feng X (2006) Development and validation of vectors containing multiple siRNA expression cassettes for maximizing the efficiency of gene silencing. BMC Biotechnol 6:50

    Article  Google Scholar 

  18. Peter ME (2010) Targeting of mRNAs by multiple miRNAs: the next step. Oncogene 29:2161–2164

    Article  CAS  Google Scholar 

  19. Lee SK, Tung CH (2013) A fabricated siRNA nanoparticle for ultra-long gene silencing. Adv Funct Mater 23:3488–3493

    Article  CAS  Google Scholar 

  20. Nishimura M, Jung EJ, Shah MY, Lu C, Spizzo R, Shimizu M et al (2013) Therapeutic synergy between microRNA and siRNA in ovarian cancer treatment. Cancer Discov 3:1302–1315

    Article  CAS  Google Scholar 

  21. Xue W, Dahlman JE, Tammela T, Khan OF, Sood S, Dave A et al (2014) Small RNA combination therapy for lung cancer. Proc Natl Acad Sci U S A 111:E3553–E3561

    Article  CAS  Google Scholar 

  22. Reis-Filho JS, Steele D, Di Palma S, Jones RL, Savage K, James M et al (2006) Distribution and significance of nerve growth factor receptor (NGFR/p75NTR) in normal, benign and malignant breast tissue. Mod Pathol 19:307–319

    Article  CAS  Google Scholar 

  23. Vanhecke E, Adriaenssens E, Verbeke S, Meignan S, Germain E, Berteaux N et al (2011) Brain-derived neurotrophic factor and neurotrophin-4/5 are expressed in breast cancer and can be targeted to inhibit tumor cell survival. Clin Cancer Res 17:1741–1752

    Article  CAS  Google Scholar 

  24. Zuo QF, Zhang R, Li BS, Zhao YL, Zhuang Y, Yu T et al (2015) MicroRNA-141 inhibits tumor growth and metastasis in gastric cancer by directly targeting transcriptional co-activator with PDZ-binding motif, TAZ. Cell Death Dis 6:e1623

    Article  Google Scholar 

  25. Finlay-Schultz J, Cittelly DM, Hendricks P, Patel P, Kabos P, Jacobsen BM et al (2015) Progesterone downregulation of miR-141 contributes to expansion of stem-like breast cancer cells through maintenance of progesterone receptor and Stat5a. Oncogene 34:3676–3687

    Article  CAS  Google Scholar 

  26. Lee SK, Law B, Tung CH (2017) Versatile nanodelivery platform to maximize siRNA combination therapy. Macromol Biosci 17:1600294

    Article  Google Scholar 

  27. Javadpour MM, Juban MM, Lo WC, Bishop SM, Alberty JB, Cowell SM et al (1996) De novo antimicrobial peptides with low mammalian cell toxicity. J Med Chem 39:3107–3113

    Article  CAS  Google Scholar 

  28. Ellerby HM, Arap W, Ellerby LM, Kain R, Andrusiak R, Rio GD et al (1999) Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med 5:1032–1038

    Article  CAS  Google Scholar 

  29. Agemy L, Friedmann-Morvinski D, Kotamraju VR, Roth L, Sugahara KN, Girard OM et al (2011) Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proc Natl Acad Sci U S A 108:17450–17455

    Article  CAS  Google Scholar 

  30. Cieslewicz M, Tang J, Yu JL, Cao H, Zavaljevski M, Motoyama K et al (2013) Targeted delivery of proapoptotic peptides to tumor-associated macrophages improves survival. Proc Natl Acad Sci U S A 110:15919–15924

    Article  CAS  Google Scholar 

  31. Chen WH, Xu XD, Luo GF, Jia HZ, Lei Q, Cheng SX et al (2013) Dual-targeting pro-apoptotic peptide for programmed cancer cell death via specific mitochondria damage. Sci Rep 3:3468

    Article  Google Scholar 

  32. Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed B (1990) CD44 is the principal cell surface receptor for hyaluronate. Cell 61:1303–1313

    Article  CAS  Google Scholar 

  33. Oh EJ, Park K, Kim KS, Kim J, Yang JA, Kong JH et al (2010) Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. J Control Release 141:2–12

    Article  CAS  Google Scholar 

  34. Dreaden EC, Morton SW, Shopsowitz KE, Choi JH, Deng ZJ, Cho NJ et al (2014) Bimodal tumor-targeting from microenvironment responsive hyaluronan layer-by-layer (LbL) nanoparticles. ACS Nano 8:8374–8382

    Article  CAS  Google Scholar 

  35. Lee SK, Mortensen LJ, Lin CP, Tung CH (2014) An authentic imaging probe to track cell fate from beginning to end. Nat Commun 5:5216

    Article  CAS  Google Scholar 

  36. Lee SK, Han MS, Tung CH (2012) Layered nanoprobe for long-lasting fluorescent cell label. Small 8:3315–3320

    Article  CAS  Google Scholar 

  37. Lee SK, Tung CH (2016) siRNA nanoparticles for ultra-long gene silencing in vivo. Methods Mol Biol 1372:113–120

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by NIH CA135312 and DOD W81XWH-11-1-0442.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Hsuan Tung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lee, S.K., Law, B., Tung, CH. (2020). Multifunctional Nanodelivery Platform for Maximizing Nucleic Acids Combination Therapy. In: Sioud, M. (eds) RNA Interference and CRISPR Technologies. Methods in Molecular Biology, vol 2115. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0290-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0290-4_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0289-8

  • Online ISBN: 978-1-0716-0290-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics