Skip to main content

Chemical Modifications in RNA Interference and CRISPR/Cas Genome Editing Reagents

  • Protocol
  • First Online:
RNA Interference and CRISPR Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2115))

Abstract

Chemically modified oligonucleotides (ONs) are routinely used in the laboratory to assess gene function, and clinical advances are rapidly progressing as continual efforts are being made to optimize ON efficacy. Over the years, RNA interference (RNAi) has become one of the main tools used to inhibit RNA expression across a wide variety of species. Efforts have been made to improve the exogenous delivery of the double-stranded RNA components to the endogenous intracellular RNAi machinery to direct efficacious degradation of a user-defined RNA target. More recently, synthetic RNA ONs are being used to mimic the bacterial-derived CRISPR/Cas system to direct specific editing of the mammalian genome. Both of these techniques rely on the use of various chemical modifications to the RNA phosphate backbone or sugar in specific positions throughout the ONs to improve the desired biological outcome. Relevant chemical modifications also include conjugated targeting ligands to assist ON delivery to specific cell types. Chemical modifications are most beneficial for therapeutically relevant ONs, as they serve to enhance target binding, increase drug longevity, facilitate cell-specific targeting, improve internalization into productive intracellular compartments, and mitigate both sequence-specific as well as immune-related off-target effects (OTEs). The knowledge gained from years of optimizing RNAi reagents and characterizing the biochemical and biophysical properties of each chemical modification will hopefully accelerate the CRISPR/Cas technology into the clinic, as well as further expand the use of RNAi to treat currently undruggable diseases. This review discusses the most commonly employed chemical modifications in RNAi reagents and CRISPR/Cas guide RNAs and provides an overview of select publications that have demonstrated success in improving ON efficacy and/or mitigating undesired OTEs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stephenson ML, Zamecnik PC (1978) Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci U S A 75:285–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  3. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  CAS  PubMed  Google Scholar 

  4. Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33

    Article  CAS  PubMed  Google Scholar 

  5. Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349

    Article  CAS  PubMed  Google Scholar 

  6. Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123:607–620

    Article  CAS  PubMed  Google Scholar 

  7. Leuschner PJ, Ameres SL, Kueng S, Martinez J (2006) Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep 7:314–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441

    Article  CAS  PubMed  Google Scholar 

  9. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197

    Article  CAS  PubMed  Google Scholar 

  10. Kim H, Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15:321–334

    Article  CAS  PubMed  Google Scholar 

  11. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cho SW, Kim S, Kim JM, Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31:230–232

    Article  CAS  PubMed  Google Scholar 

  14. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim H, Kim ST, Ryu J, Kang BC, Kim JS, Kim SG (2017) CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Commun 8:14406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X, Voytas DF, Zhong Z, Chen Y, Ren Q, Li Q et al (2017) A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3:17103

    Article  PubMed  Google Scholar 

  18. Moreno-Mateos MA, Fernandez JP, Rouet R, Vejnar CE, Lane MA, Mis E, Khokha MK, Doudna JA, Giraldez AJ (2017) CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing. Nat Commun 8:2024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Layzer JM, McCaffrey AP, Tanner AK, Huang Z, Kay MA, Sullenger BA (2004) In vivo activity of nuclease-resistant siRNAs. RNA 10:766–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gantier MP, Williams BR (2007) The response of mammalian cells to double-stranded RNA. Cytokine Growth Factor Rev 18:363–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dowdy SF (2017) Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol 35:222–229

    Article  CAS  PubMed  Google Scholar 

  22. Miller CM, Tanowitz M, Donner AJ, Prakash TP, Swayze EE, Harris EN, Seth PP (2018) Receptor-mediated uptake of phosphorothioate antisense oligonucleotides in different cell types of the liver. Nucleic Acid Ther 28:119–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Freier SM, Altmann KH (1997) The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA:RNA duplexes. Nucleic Acids Res 25:4429–4443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lennox KA, Behlke MA (2010) A direct comparison of anti-microRNA oligonucleotide potency. Pharm Res 27:1788–1799

    Article  CAS  PubMed  Google Scholar 

  25. Yanai H, Chiba S, Ban T, Nakaima Y, Onoe T, Honda K, Ohdan H, Taniguchi T (2011) Suppression of immune responses by nonimmunogenic oligodeoxynucleotides with high affinity for high-mobility group box proteins (HMGBs). Proc Natl Acad Sci U S A 108:11542–11547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schwarz DS, Tomari Y, Zamore PD (2004) The RNA-induced silencing complex is a Mg2+−dependent endonuclease. Curr Biol 14:787–791

    Article  CAS  PubMed  Google Scholar 

  27. Chiu YL, Rana TM (2003) siRNA function in RNAi: a chemical modification analysis. RNA 9:1034–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Choung S, Kim YJ, Kim S, Park HO, Choi YC (2006) Chemical modification of siRNAs to improve serum stability without loss of efficacy. Biochem Biophys Res Commun 342:919–927

    Article  CAS  PubMed  Google Scholar 

  29. Detzer A, Sczakiel G (2009) Phosphorothioate-stimulated uptake of siRNA by mammalian cells: a novel route for delivery. Curr Top Med Chem 9:1109–1116

    Article  CAS  PubMed  Google Scholar 

  30. Rettig GR, Behlke MA (2012) Progress toward in vivo use of siRNAs-II. Mol Ther 20:483–512

    Article  CAS  PubMed  Google Scholar 

  31. Hall AH, Wan J, Shaughnessy EE, Ramsay Shaw B, Alexander KA (2004) RNA interference using boranophosphate siRNAs: structure-activity relationships. Nucleic Acids Res 32:5991–6000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Deleavey GF, Damha MJ (2012) Designing chemically modified oligonucleotides for targeted gene silencing. Chem Biol 19:937–954

    Article  CAS  PubMed  Google Scholar 

  33. Dellinger DJ, Sheehan DM, Christensen NK, Lindberg JG, Caruthers MH (2003) Solid-phase chemical synthesis of phosphonoacetate and thiophosphonoacetate oligodeoxynucleotides. J Am Chem Soc 125:940–950

    Article  CAS  PubMed  Google Scholar 

  34. Sheehan D, Lunstad B, Yamada CM, Stell BG, Caruthers MH, Dellinger DJ (2003) Biochemical properties of phosphonoacetate and thiophosphonoacetate oligodeoxyribonucleotides. Nucleic Acids Res 31:4109–4118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ryan DE, Taussig D, Steinfeld I, Phadnis SM, Lunstad BD, Singh M, Vuong X, Okochi KD, McCaffrey R, Olesiak M et al (2018) Improving CRISPR-Cas specificity with chemical modifications in single-guide RNAs. Nucleic Acids Res 46:792–803

    Article  CAS  PubMed  Google Scholar 

  36. Threlfall RN, Torres AG, Krivenko A, Gait MJ, Caruthers MH (2012) Synthesis and biological activity of phosphonoacetate- and thiophosphonoacetate-modified 2’-O-methyl oligoribonucleotides. Org Biomol Chem 10:746–754

    Article  CAS  PubMed  Google Scholar 

  37. Meade BR, Gogoi K, Hamil AS, Palm-Apergi C, van den Berg A, Hagopian JC, Springer AD, Eguchi A, Kacsinta AD, Dowdy CF et al (2014) Efficient delivery of RNAi prodrugs containing reversible charge-neutralizing phosphotriester backbone modifications. Nat Biotechnol 32:1256–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wan WB, Seth PP (2016) The medicinal chemistry of therapeutic oligonucleotides. J Med Chem 59:9645–9667

    Article  CAS  PubMed  Google Scholar 

  39. Koshkin AA, Nielsen P, Meldgaard M, Rajwanshi VK, Singh SK, Wengel J (1998) LNA (locked nucleic acid): an RNA mimic forming exceedingly stable LNA:LNA duplexes. J Am Chem Soc 120:2

    Article  Google Scholar 

  40. Obika S, Nanbu D, Hari Y, Andoh J, Morio K, Doi T, Imanishi T (1998) Stability and structural features of the duplexes containing nucleoside analogues with a fixed N-type conformation, 2′-O,4′-C-methyleneribonucleosides. Tetrahedron Lett 39:4

    Article  Google Scholar 

  41. Lennox KA, Owczarzy R, Thomas DM, Walder JA, Behlke MA (2013) Improved performance of Anti-miRNA oligonucleotides using a novel non-nucleotide modifier. Mol Ther Nucleic Acids 2:e117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Nishizaki T, Iwai S, Ohtsuka E, Nakamura H (1997) Solution structure of an RNA.2’-O-methylated RNA hybrid duplex containing an RNA.DNA hybrid segment at the center. Biochemistry 36:2577–2585

    Article  CAS  PubMed  Google Scholar 

  43. Jackson AL, Burchard J, Leake D, Reynolds A, Schelter J, Guo J, Johnson JM, Lim L, Karpilow J, Nichols K et al (2006) Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA 12:1197–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Czauderna F, Fechtner M, Dames S, Aygun H, Klippel A, Pronk GJ, Giese K, Kaufmann J (2003) Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res 31:2705–2716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Collingwood MA, Rose SD, Huang L, Hillier C, Amarzguioui M, Wiiger MT, Soifer HS, Rossi JJ, Behlke MA (2008) Chemical modification patterns compatible with high potency dicer-substrate small interfering RNAs. Oligonucleotides 18:187–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kraynack BA, Baker BF (2006) Small interfering RNAs containing full 2’-O-methylribonucleotide-modified sense strands display Argonaute2/eIF2C2-dependent activity. RNA 12:163–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Egli M, Manoharan M (2019) Re-engineering RNA molecules into therapeutic agents. Acc Chem Res 52:1036–1047

    Article  CAS  PubMed  Google Scholar 

  48. Braasch DA, Jensen S, Liu Y, Kaur K, Arar K, White MA, Corey DR (2003) RNA interference in mammalian cells by chemically-modified RNA. Biochemistry 42:7967–7975

    Article  CAS  PubMed  Google Scholar 

  49. Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T (2001) Functional anatomy of siRNAs for mediating efficient RNAi in drosophila melanogaster embryo lysate. EMBO J 20:6877–6888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Prakash TP, Allerson CR, Dande P, Vickers TA, Sioufi N, Jarres R, Baker BF, Swayze EE, Griffey RH, Bhat B (2005) Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J Med Chem 48:4247–4253

    Article  CAS  PubMed  Google Scholar 

  51. Davis S, Lollo B, Freier S, Esau C (2006) Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res 34:2294–2304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Teplova M, Minasov G, Tereshko V, Inamati GB, Cook PD, Manoharan M, Egli M (1999) Crystal structure and improved antisense properties of 2’-O-(2-methoxyethyl)-RNA. Nat Struct Biol 6:535–539

    Article  CAS  PubMed  Google Scholar 

  53. Manoharan M (1999) 2′-carbohydrate modifications in antisense oligonucleotide therapy: importance of conformation, configuration and conjugation. Biochim Biophys Acta 1489:117–130

    Article  CAS  PubMed  Google Scholar 

  54. Hemmings-Mieszczak M, Dorn G, Natt FJ, Hall J, Wishart WL (2003) Independent combinatorial effect of antisense oligonucleotides and RNAi-mediated specific inhibition of the recombinant rat P2X3 receptor. Nucleic Acids Res 31:2117–2126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dorn G, Patel S, Wotherspoon G, Hemmings-Mieszczak M, Barclay J, Natt FJ, Martin P, Bevan S, Fox A, Ganju P et al (2004) siRNA relieves chronic neuropathic pain. Nucleic Acids Res 32:e49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Song X, Wang X, Ma Y, Liang Z, Yang Z, Cao H (2017) Site-specific modification using the 2′-methoxyethyl group improves the specificity and activity of siRNAs. Mol Ther Nucleic Acids 9:242–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Purser S, Moore PR, Swallow S, Gouverneur V (2008) Fluorine in medicinal chemistry. Chem Soc Rev 37:320–330

    Article  CAS  PubMed  Google Scholar 

  58. Muhonen P, Tennila T, Azhayeva E, Parthasarathy RN, Janckila AJ, Vaananen HK, Azhayev A, Laitala-Leinonen T (2007) RNA interference tolerates 2′-fluoro modifications at the Argonaute2 cleavage site. Chem Biodivers 4:858–873

    Article  CAS  PubMed  Google Scholar 

  59. Harborth J, Elbashir SM, Vandenburgh K, Manninga H, Scaringe SA, Weber K, Tuschl T (2003) Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev 13:83–105

    Article  CAS  PubMed  Google Scholar 

  60. Blidner RA, Hammer RP, Lopez MJ, Robinson SO, Monroe WT (2007) Fully 2′-deoxy-2′-fluoro substituted nucleic acids induce RNA interference in mammalian cell culture. Chem Biol Drug Des 70:113–122

    Article  CAS  PubMed  Google Scholar 

  61. Manoharan M, Akinc A, Pandey RK, Qin J, Hadwiger P, John M, Mills K, Charisse K, Maier MA, Nechev L et al (2011) Unique gene-silencing and structural properties of 2′-fluoro-modified siRNAs. Angew Chem Int Ed Engl 50:2284–2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Watts JK, Deleavey GF, Damha MJ (2008) Chemically modified siRNA: tools and applications. Drug Discov Today 13:842–855

    Article  CAS  PubMed  Google Scholar 

  63. Deleavey GF, Watts JK, Damha MJ (2009) Chemical modification of siRNA. Curr Protoc Nucleic Acid Chem 16:13

    Google Scholar 

  64. Deleavey GF, Watts JK, Alain T, Robert F, Kalota A, Aishwarya V, Pelletier J, Gewirtz AM, Sonenberg N, Damha MJ (2010) Synergistic effects between analogs of DNA and RNA improve the potency of siRNA-mediated gene silencing. Nucleic Acids Res 38:4547–4557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Viel T, Boisgard R, Kuhnast B, Jego B, Siquier-Pernet K, Hinnen F, Dolle F, Tavitian B (2008) Molecular imaging study on in vivo distribution and pharmacokinetics of modified small interfering RNAs (siRNAs). Oligonucleotides 18:201–212

    Article  CAS  PubMed  Google Scholar 

  66. Trempe JF, Wilds CJ, Denisov AY, Pon RT, Damha MJ, Gehring K (2001) NMR solution structure of an oligonucleotide hairpin with a 2’F-ANA/RNA stem: implications for RNase H specificity toward DNA/RNA hybrid duplexes. J Am Chem Soc 123:4896–4903

    Article  CAS  PubMed  Google Scholar 

  67. Dowler T, Bergeron D, Tedeschi AL, Paquet L, Ferrari N, Damha MJ (2006) Improvements in siRNA properties mediated by 2′-deoxy-2′-fluoro-beta-D-arabinonucleic acid (FANA). Nucleic Acids Res 34:1669–1675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Eichert A, Behling K, Betzel C, Erdmann VA, Furste JP, Forster C (2010) The crystal structure of an ‘All Locked’ nucleic acid duplex. Nucleic Acids Res 38:6729–6736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mook OR, Baas F, de Wissel MB, Fluiter K (2007) Evaluation of locked nucleic acid-modified small interfering RNA in vitro and in vivo. Mol Cancer Ther 6:833–843

    Article  CAS  PubMed  Google Scholar 

  70. Elmen J, Thonberg H, Ljungberg K, Frieden M, Westergaard M, Xu Y, Wahren B, Liang Z, Orum H, Koch T et al (2005) Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res 33:439–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216

    Article  CAS  PubMed  Google Scholar 

  72. Glud SZ, Bramsen JB, Dagnaes-Hansen F, Wengel J, Howard KA, Nyengaard JR, Kjems J (2009) Naked siLNA-mediated gene silencing of lung bronchoepithelium EGFP expression after intravenous administration. Oligonucleotides 19:163–168

    Article  CAS  PubMed  Google Scholar 

  73. Pallan PS, Allerson CR, Berdeja A, Seth PP, Swayze EE, Prakash TP, Egli M (2012) Structure and nuclease resistance of 2′,4′-constrained 2’-O-methoxyethyl (cMOE) and 2’-O-ethyl (cEt) modified DNAs. Chem Commun (Camb) 48:8195–8197

    Article  CAS  Google Scholar 

  74. Seth PP, Vasquez G, Allerson CA, Berdeja A, Gaus H, Kinberger GA, Prakash TP, Migawa MT, Bhat B, Swayze EE (2010) Synthesis and biophysical evaluation of 2′,4′-constrained 2’O-methoxyethyl and 2′,4′-constrained 2’O-ethyl nucleic acid analogues. J Org Chem 75:1569–1581

    Article  CAS  PubMed  Google Scholar 

  75. Seth PP, Siwkowski A, Allerson CR, Vasquez G, Lee S, Prakash TP, Wancewicz EV, Witchell D, Swayze EE (2009) Short antisense oligonucleotides with novel 2′-4′ conformationaly restricted nucleoside analogues show improved potency without increased toxicity in animals. J Med Chem 52:10–13

    Article  CAS  PubMed  Google Scholar 

  76. Hong D, Kurzrock R, Kim Y, Woessner R, Younes A, Nemunaitis J, Fowler N, Zhou T, Schmidt J, Jo M et al (2015) AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer. Sci Transl Med 7:314ra185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Burel SA, Han SR, Lee HS, Norris DA, Lee BS, Machemer T, Park SY, Zhou T, He G, Kim Y et al (2013) Preclinical evaluation of the toxicological effects of a novel constrained ethyl modified antisense compound targeting signal transducer and activator of transcription 3 in mice and cynomolgus monkeys. Nucleic Acid Ther 23:213–227

    Article  CAS  PubMed  Google Scholar 

  78. Pandey SK, Wheeler TM, Justice SL, Kim A, Younis HS, Gattis D, Jauvin D, Puymirat J, Swayze EE, Freier SM et al (2015) Identification and characterization of modified antisense oligonucleotides targeting DMPK in mice and nonhuman primates for the treatment of myotonic dystrophy type 1. J Pharmacol Exp Ther 355:310–321

    Article  CAS  Google Scholar 

  79. Ittig D, Luisier S, Weiler J, Schumperli D, Leumann CJ (2010) Improving gene silencing of siRNAs via tricyclo-DNA modification. Artif DNA PNA XNA 1:9–16

    Article  PubMed  PubMed Central  Google Scholar 

  80. Mangos MM, Min KL, Viazovkina E, Galarneau A, Elzagheid MI, Parniak MA, Damha MJ (2003) Efficient RNase H-directed cleavage of RNA promoted by antisense DNA or 2’F-ANA constructs containing acyclic nucleotide inserts. J Am Chem Soc 125:654–661

    Article  CAS  PubMed  Google Scholar 

  81. Campbell MA, Wengel J (2011) Locked vs. unlocked nucleic acids (LNA vs. UNA): contrasting structures work towards common therapeutic goals. Chem Soc Rev 40:5680–5689

    Article  CAS  PubMed  Google Scholar 

  82. Langkjaer N, Pasternak A, Wengel J (2009) UNA (unlocked nucleic acid): a flexible RNA mimic that allows engineering of nucleic acid duplex stability. Bioorg Med Chem 17:5420–5425

    Article  CAS  PubMed  Google Scholar 

  83. Bramsen JB, Laursen MB, Nielsen AF, Hansen TB, Bus C, Langkjaer N, Babu BR, Hojland T, Abramov M, Van Aerschot A et al (2009) A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity. Nucleic Acids Res 37:2867–2881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Laursen MB, Pakula MM, Gao S, Fluiter K, Mook OR, Baas F, Langklaer N, Wengel SL, Wengel J, Kjems J et al (2010) Utilization of unlocked nucleic acid (UNA) to enhance siRNA performance in vitro and in vivo. Mol BioSyst 6:862–870

    Article  CAS  PubMed  Google Scholar 

  85. Vaish N, Chen F, Seth S, Fosnaugh K, Liu Y, Adami R, Brown T, Chen Y, Harvie P, Johns R et al (2011) Improved specificity of gene silencing by siRNAs containing unlocked nucleobase analogs. Nucleic Acids Res 39:1823–1832

    Article  CAS  PubMed  Google Scholar 

  86. Kenski DM, Cooper AJ, Li JJ, Willingham AT, Haringsma HJ, Young TA, Kuklin NA, Jones JJ, Cancilla MT, McMasters DR et al (2010) Analysis of acyclic nucleoside modifications in siRNAs finds sensitivity at position 1 that is restored by 5′-terminal phosphorylation both in vitro and in vivo. Nucleic Acids Res 38:660–671

    Article  CAS  PubMed  Google Scholar 

  87. Zhang L, Peritz A, Meggers E (2005) A simple glycol nucleic acid. J Am Chem Soc 127:4174–4175

    Article  CAS  PubMed  Google Scholar 

  88. Schlegel MK, Peritz AE, Kittigowittana K, Zhang L, Meggers E (2007) Duplex formation of the simplified nucleic acid GNA. Chembiochem 8:927–932

    Article  CAS  PubMed  Google Scholar 

  89. Schlegel MK, Foster DJ, Kel’in AV, Zlatev I, Bisbe A, Jayaraman M, Lackey JG, Rajeev KG, Charisse K, Harp J et al (2017) Chirality dependent potency enhancement and structural impact of glycol nucleic acid modification on siRNA. J Am Chem Soc 139:8537–8546

    Article  CAS  PubMed  Google Scholar 

  90. Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110:563–574

    Article  CAS  PubMed  Google Scholar 

  91. Weitzer S, Martinez J (2007) The human RNA kinase hClp1 is active on 3′ transfer RNA exons and short interfering RNAs. Nature 447:222–226

    Article  CAS  PubMed  Google Scholar 

  92. Parmar R, Willoughby JL, Liu J, Foster DJ, Brigham B, Theile CS, Charisse K, Akinc A, Guidry E, Pei Y et al (2016) 5′-(E)-vinylphosphonate: a stable phosphate mimic can improve the RNAi activity of siRNA-GalNAc conjugates. Chembiochem 17:985–989

    Article  CAS  PubMed  Google Scholar 

  93. Prakash TP, Lima WF, Murray HM, Li W, Kinberger GA, Chappell AE, Gaus H, Seth PP, Bhat B, Crooke ST et al (2015) Identification of metabolically stable 5′-phosphate analogs that support single-stranded siRNA activity. Nucleic Acids Res 43:2993–3011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Prakash TP, Lima WF, Murray HM, Elbashir S, Cantley W, Foster D, Jayaraman M, Chappell AE, Manoharan M, Swayze EE et al (2013) Lipid nanoparticles improve activity of single-stranded siRNA and gapmer antisense oligonucleotides in animals. ACS Chem Biol 8:1402–1406

    Article  CAS  PubMed  Google Scholar 

  95. Zlatev I, Foster DJ, Liu J, Charisse K, Brigham B, Parmar RG, Jadhav V, Maier MA, Rajeev KG, Egli M et al (2016) 5’-C-Malonyl RNA: small interfering RNAs modified with 5′-monophosphate bioisostere demonstrate gene silencing activity. ACS Chem Biol 11:953–960

    Article  CAS  PubMed  Google Scholar 

  96. Juliano RL (2016) The delivery of therapeutic oligonucleotides. Nucleic Acids Res 44:6518–6548

    Article  PubMed  PubMed Central  Google Scholar 

  97. Lorenz C, Hadwiger P, John M, Vornlocher HP, Unverzagt C (2004) Steroid and lipid conjugates of siRNAs to enhance cellular uptake and gene silencing in liver cells. Bioorg Med Chem Lett 14:4975–4977

    Article  CAS  PubMed  Google Scholar 

  98. Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J et al (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432:173–178

    Article  CAS  PubMed  Google Scholar 

  99. Wolfrum C, Shi S, Jayaprakash KN, Jayaraman M, Wang G, Pandey RK, Rajeev KG, Nakayama T, Charrise K, Ndungo EM et al (2007) Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat Biotechnol 25:1149–1157

    Article  CAS  PubMed  Google Scholar 

  100. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689

    Article  PubMed  CAS  Google Scholar 

  101. DiFiglia M, Sena-Esteves M, Chase K, Sapp E, Pfister E, Sass M, Yoder J, Reeves P, Pandey RK, Rajeev KG et al (2007) Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci U S A 104:17204–17209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Khan T, Weber H, DiMuzio J, Matter A, Dogdas B, Shah T, Thankappan A, Disa J, Jadhav V, Lubbers L et al (2016) Silencing myostatin using cholesterol-conjugated siRNAs induces muscle growth. Mol Therapy Nucleic Acids 5:e342

    Article  CAS  PubMed  Google Scholar 

  103. Nishina K, Unno T, Uno Y, Kubodera T, Kanouchi T, Mizusawa H, Yokota T (2008) Efficient in vivo delivery of siRNA to the liver by conjugation of alpha-tocopherol. Mol Ther 16:734–740

    Article  CAS  PubMed  Google Scholar 

  104. Prakash TP, Mullick AE, Lee RG, Yu J, Yeh ST, Low A, Chappell AE, Ostergaard ME, Murray S, Gaus HJ et al (2019) Fatty acid conjugation enhances potency of antisense oligonucleotides in muscle. Nucleic Acids Res 47:6029–6044

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ostergaard ME, Jackson M, Low A, A EC, R GL, Peralta RQ, Yu J, Kinberger GA, Dan A, Carty R et al (2019) Conjugation of hydrophobic moieties enhances potency of antisense oligonucleotides in the muscle of rodents and non-human primates. Nucleic Acids Res 47:6045–6058

    PubMed  PubMed Central  Google Scholar 

  106. Biscans A, Coles A, Haraszti R, Echeverria D, Hassler M, Osborn M, Khvorova A (2018) Diverse lipid conjugates for functional extra-hepatic siRNA delivery in vivo. Nucleic Acids Res 47:1082–1096

    Article  PubMed Central  CAS  Google Scholar 

  107. Nair JK, Willoughby JL, Chan A, Charisse K, Alam MR, Wang Q, Hoekstra M, Kandasamy P, Kel’in AV, Milstein S et al (2014) Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc 136:16958–16961

    Article  CAS  PubMed  Google Scholar 

  108. Spiess M (1990) The asialoglycoprotein receptor: a model for endocytic transport receptors. Biochemistry 29:10009–10018

    Article  CAS  PubMed  Google Scholar 

  109. Khvorova A, Watts JK (2017) The chemical evolution of oligonucleotide therapies of clinical utility. Nat Biotechnol 35:238–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Foster DJ, Brown CR, Shaikh S, Trapp C, Schlegel MK, Qian K, Sehgal A, Rajeev KG, Jadhav V, Manoharan M et al (2018) Advanced siRNA designs further improve in vivo performance of GalNAc-siRNA conjugates. Mol Ther 26:708–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nair JK, Attarwala H, Sehgal A, Wang Q, Aluri K, Zhang X, Gao M, Liu J, Indrakanti R, Schofield S et al (2017) Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc-siRNA conjugates. Nucleic Acids Res 45:10969–10977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ammala C, Drury WJ 3rd, Knerr L, Ahlstedt I, Stillemark-Billton P, Wennberg-Huldt C, Andersson EM, Valeur E, Jansson-Lofmark R, Janzen D et al (2018) Targeted delivery of antisense oligonucleotides to pancreatic beta-cells. Sci Adv 4:eaat3386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lennox KA, Behlke MA (2016) Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Res 44:863–877

    Article  CAS  PubMed  Google Scholar 

  114. Dar SA, Thakur A, Qureshi A, Kumar M (2016) siRNAmod: a database of experimentally validated chemically modified siRNAs. Sci Rep 6:20031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Morrissey DV, Blanchard K, Shaw L, Jensen K, Lockridge JA, Dickinson B, McSwiggen JA, Vargeese C, Bowman K, Shaffer CS et al (2005) Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology 41:1349–1356

    Article  CAS  PubMed  Google Scholar 

  116. Allerson CR, Sioufi N, Jarres R, Prakash TP, Naik N, Berdeja A, Wanders L, Griffey RH, Swayze EE, Bhat B (2005) Fully 2′-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J Med Chem 48:901–904

    Article  CAS  PubMed  Google Scholar 

  117. Fitzgerald K, Kallend D, Simon A (2017) A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med 376:e38

    Article  PubMed  Google Scholar 

  118. Rajeev KG, Nair JK, Jayaraman M, Charisse K, Taneja N, O’Shea J, Willoughby JL, Yucius K, Nguyen T, Shulga-Morskaya S et al (2015) Hepatocyte-specific delivery of siRNAs conjugated to novel non-nucleosidic trivalent N-acetylgalactosamine elicits robust gene silencing in vivo. Chembiochem 16:903–908

    Article  CAS  PubMed  Google Scholar 

  119. Adams D, Gonzalez-Duarte A, O’Riordan WD, Yang CC, Ueda M, Kristen AV, Tournev I, Schmidt HH, Coelho T, Berk JL et al (2018) Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 379:11–21

    Article  CAS  PubMed  Google Scholar 

  120. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  CAS  PubMed  Google Scholar 

  121. Pitt JM, Kroemer G, Zitvogel L (2016) Extracellular vesicles: masters of intercellular communication and potential clinical interventions. J Clin Invest 126:1139–1143

    Article  PubMed  PubMed Central  Google Scholar 

  122. Stremersch S, Vandenbroucke RE, Van Wonterghem E, Hendrix A, De Smedt SC, Raemdonck K (2016) Comparing exosome-like vesicles with liposomes for the functional cellular delivery of small RNAs. J Control Release 232:51–61

    Article  CAS  PubMed  Google Scholar 

  123. van der Meel R, Fens MH, Vader P, van Solinge WW, Eniola-Adefeso O, Schiffelers RM (2014) Extracellular vesicles as drug delivery systems: lessons from the liposome field. J Control Release 195:72–85

    Article  PubMed  CAS  Google Scholar 

  124. Wahlgren J, De LKT, Brisslert M, Vaziri Sani F, Telemo E, Sunnerhagen P, Valadi H (2012) Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res 40:e130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kooijmans SAA, Stremersch S, Braeckmans K, de Smedt SC, Hendrix A, Wood MJA, Schiffelers RM, Raemdonck K, Vader P (2013) Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. J Control Release 172:229–238

    Article  CAS  PubMed  Google Scholar 

  126. Didiot MC, Hall LM, Coles AH, Haraszti RA, Godinho BM, Chase K, Sapp E, Ly S, Alterman JF, Hassler MR et al (2016) Exosome-mediated delivery of hydrophobically modified siRNA for huntingtin mRNA silencing. Mol Ther 24:1836–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Biscans A, Haraszti RA, Echeverria D, Miller R, Didiot MC, Nikan M, Roux L, Aronin N, Khvorova A (2018) Hydrophobicity of lipid-conjugated siRNAs predicts productive loading to small extracellular vesicles. Mol Ther 26:1520–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yin H, Song CQ, Suresh S, Wu Q, Walsh S, Rhym LH, Mintzer E, Bolukbasi MF, Zhu LJ, Kauffman K et al (2017) Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat Biotechnol 35:1179–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, Steinfeld I, Lunstad BD, Kaiser RJ, Wilkens AB et al (2015) Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol 33:985–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Finn JD, Smith AR, Patel MC, Shaw L, Youniss MR, van Heteren J, Dirstine T, Ciullo C, Lescarbeau R, Seitzer J et al (2018) A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep 22:2227–2235

    Article  CAS  PubMed  Google Scholar 

  131. Rahdar M, McMahon MA, Prakash TP, Swayze EE, Bennett CF, Cleveland DW (2015) Synthetic CRISPR RNA-Cas9-guided genome editing in human cells. Proc Natl Acad Sci U S A 112:E7110–E7117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mir A, Alterman JF, Hassler MR, Debacker AJ, Hudgens E, Echeverria D, Brodsky MH, Khvorova A, Watts JK, Sontheimer EJ (2018) Heavily and fully modified RNAs guide efficient SpyCas9-mediated genome editing. Nat Commun 9:2641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Swarts DC, van der Oost J, Jinek M (2017) Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. Mol Cell 66(221–233):e224

    Google Scholar 

  134. McMahon MA, Prakash TP, Cleveland DW, Bennett CF, Rahdar M (2018) Chemically modified Cpf1-CRISPR RNAs mediate efficient genome editing in mammalian cells. Mol Ther 26:1228–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rose SD, Kim DH, Amarzguioui M, Heidel JD, Collingwood MA, Davis ME, Rossi JJ, Behlke MA (2005) Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic Acids Res 33:4140–4156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kubo T, Zhelev Z, Ohba H, Bakalova R (2007) Modified 27-nt dsRNAs with dramatically enhanced stability in serum and long-term RNAi activity. Oligonucleotides 17:445–464

    Article  CAS  PubMed  Google Scholar 

  137. Kubo T, Zhelev Z, Ohba H, Bakalova R (2008) Chemically modified symmetric and asymmetric duplex RNAs: an enhanced stability to nuclease degradation and gene silencing effect. Biochem Biophys Res Commun 365:54–61

    Article  CAS  PubMed  Google Scholar 

  138. Bramsen JB, Laursen MB, Damgaard CK, Lena SW, Babu BR, Wengel J, Kjems J (2007) Improved silencing properties using small internally segmented interfering RNAs. Nucleic Acids Res 35:5886–5897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Yuan Z, Wu X, Liu C, Xu G, Wu Z (2012) Asymmetric siRNA: new strategy to improve specificity and reduce off-target gene expression. Hum Gene Ther 23:521–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sun X, Rogoff HA, Li CJ (2008) Asymmetric RNA duplexes mediate RNA interference in mammalian cells. Nat Biotechnol 26:1379–1382

    Article  CAS  PubMed  Google Scholar 

  141. Chang CI, Yoo JW, Hong SW, Lee SE, Kang HS, Sun X, Rogoff HA, Ban C, Kim S, Li CJ et al (2009) Asymmetric shorter-duplex siRNA structures trigger efficient gene silencing with reduced nonspecific effects. Mol Ther 17:725–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hong SW, Park JH, Yun S, Lee CH, Shin C, Lee DK (2014) Effect of the guide strand 3′-end structure on the gene-silencing potency of asymmetric siRNA. Biochem J 461:427–434

    Article  CAS  PubMed  Google Scholar 

  143. Petrova Kruglova NS, Meschaninova MI, Venyaminova AG, Zenkova MA, Vlassov VV, Chernolovskaya EL (2010) 2’-O-methyl-modified anti-MDR1 fork-siRNA duplexes exhibiting high nuclease resistance and prolonged silencing activity. Oligonucleotides 20:297–308

    Article  PubMed  CAS  Google Scholar 

  144. Zhang L, Liang D, Chen C, Wang Y, Amu G, Yang J, Yu L, Dmochowski IJ, Tang X (2018) Circular siRNAs for reducing off-target effects and enhancing long-term gene silencing in cells and mice. Mol Ther Nucleic Acids 10:237–244

    Article  CAS  PubMed  Google Scholar 

  145. Abe N, Abe H, Ito Y (2007) Dumbbell-shaped nanocircular RNAs for RNA interference. J Am Chem Soc 129:15108–15109

    Article  CAS  PubMed  Google Scholar 

  146. Abe N, Abe H, Nagai C, Harada M, Hatakeyama H, Harashima H, Ohshiro T, Nishihara M, Furukawa K, Maeda M et al (2011) Synthesis, structure, and biological activity of dumbbell-shaped nanocircular RNAs for RNA interference. Bioconjug Chem 22:2082–2092

    Article  CAS  PubMed  Google Scholar 

  147. Ge Q, Dallas A, Ilves H, Shorenstein J, Behlke MA, Johnston BH (2010) Effects of chemical modification on the potency, serum stability, and immunostimulatory properties of short shRNAs. RNA 16:118–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Dallas A, Ilves H, Ge Q, Kumar P, Shorenstein J, Kazakov SA, Cuellar TL, McManus MT, Behlke MA, Johnston BH (2012) Right- and left-loop short shRNAs have distinct and unusual mechanisms of gene silencing. Nucleic Acids Res 40:9255–9271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ge Q, Ilves H, Dallas A, Kumar P, Shorenstein J, Kazakov SA, Johnston BH (2010) Minimal-length short hairpin RNAs: the relationship of structure and RNAi activity. RNA 16:106–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lima WF, Prakash TP, Murray HM, Kinberger GA, Li W, Chappell AE, Li CS, Murray SF, Gaus H, Seth PP et al (2012) Single-stranded siRNAs activate RNAi in animals. Cell 150:883–894

    Article  CAS  PubMed  Google Scholar 

  151. Yu D, Pendergraff H, Liu J, Kordasiewicz HB, Cleveland DW, Swayze EE, Lima WF, Crooke ST, Prakash TP, Corey DR (2012) Single-stranded RNAs use RNAi to potently and allele-selectively inhibit mutant huntingtin expression. Cell 150:895–908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Pendergraff HM, Debacker AJ, Watts JK (2016) Single-stranded silencing RNAs: hit rate and chemical modification. Nucleic Acid Ther 26:216–222

    Article  CAS  PubMed  Google Scholar 

  153. Hu J, Liu J, Yu D, Aiba Y, Lee S, Pendergraff H, Boubaker J, Artates JW, Lagier-Tourenne C, Lima WF et al (2014) Exploring the effect of sequence length and composition on allele-selective inhibition of human huntingtin expression by single-stranded silencing RNAs. Nucleic Acid Ther 24:199–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hu J, Liu J, Narayanannair KJ, Lackey JG, Kuchimanchi S, Rajeev KG, Manoharan M, Swayze EE, Lima WF, Prakash TP et al (2014) Allele-selective inhibition of mutant atrophin-1 expression by duplex and single-stranded RNAs. Biochemistry 53:4510–4518

    Article  CAS  PubMed  Google Scholar 

  155. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G, Linsley PS (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21:635–637

    Article  CAS  PubMed  Google Scholar 

  156. Jackson AL, Burchard J, Schelter J, Chau BN, Cleary M, Lim L, Linsley PS (2006) Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 12:1179–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Birmingham A, Anderson EM, Reynolds A, Ilsley-Tyree D, Leake D, Fedorov Y, Baskerville S, Maksimova E, Robinson K, Karpilow J et al (2006) 3’ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 3:199–204

    Article  CAS  PubMed  Google Scholar 

  158. Vickers TA, Lima WF, Wu H, Nichols JG, Linsley PS, Crooke ST (2009) Off-target and a portion of target-specific siRNA mediated mRNA degradation is Ago2 ‘Slicer’ independent and can be mediated by Ago1. Nucleic Acids Res 37:6927–6941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Jackson AL, Linsley PS (2010) Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 9:57–67

    Article  CAS  PubMed  Google Scholar 

  160. Wilczynska A, Bushell M (2015) The complexity of miRNA-mediated repression. Cell Death Differ 22:22–33

    Article  CAS  PubMed  Google Scholar 

  161. Janas MM, Schlegel MK, Harbison CE, Yilmaz VO, Jiang Y, Parmar R, Zlatev I, Castoreno A, Xu H, Shulga-Morskaya S et al (2018) Selection of GalNAc-conjugated siRNAs with limited off-target-driven rat hepatotoxicity. Nat Commun 9:723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Lee HS, Seok H, Lee DH, Ham J, Lee W, Youm EM, Yoo JS, Lee YS, Jang ES, Chi SW (2015) Abasic pivot substitution harnesses target specificity of RNA interference. Nat Commun 6:10154

    Article  CAS  PubMed  Google Scholar 

  163. Bramsen JB, Pakula MM, Hansen TB, Bus C, Langkjaer N, Odadzic D, Smicius R, Wengel SL, Chattopadhyaya J, Engels JW et al (2010) A screen of chemical modifications identifies position-specific modification by UNA to most potently reduce siRNA off-target effects. Nucleic Acids Res 38:5761–5773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Ui-Tei K, Naito Y, Zenno S, Nishi K, Yamato K, Takahashi F, Juni A, Saigo K (2008) Functional dissection of siRNA sequence by systematic DNA substitution: modified siRNA with a DNA seed arm is a powerful tool for mammalian gene silencing with significantly reduced off-target effect. Nucleic Acids Res 36:2136–2151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Minks MA, West DK, Benvin S, Baglioni C (1979) Structural requirements of double-stranded RNA for the activation of 2′,5′-oligo(A) polymerase and protein kinase of interferon-treated HeLa cells. J Biol Chem 254:10180–10183

    CAS  PubMed  Google Scholar 

  166. Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S, Noronha A, Manoharan M, Akira S, de Fougerolles A et al (2005) Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 11:263–270

    Article  CAS  PubMed  Google Scholar 

  167. Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann KK, Schlee M et al (2006) 5′-Triphosphate RNA is the ligand for RIG-I. Science 314:994–997

    Article  PubMed  Google Scholar 

  168. Marques JT, Williams BR (2005) Activation of the mammalian immune system by siRNAs. Nat Biotechnol 23:1399–1405

    Article  CAS  PubMed  Google Scholar 

  169. Robbins M, Judge A, MacLachlan I (2009) siRNA and innate immunity. Oligonucleotides 19:89–102

    Article  CAS  PubMed  Google Scholar 

  170. Robbins M, Judge A, Ambegia E, Choi C, Yaworski E, Palmer L, McClintock K, MacLachlan I (2008) Misinterpreting the therapeutic effects of small interfering RNA caused by immune stimulation. Hum Gene Ther 19:991–999

    Article  CAS  PubMed  Google Scholar 

  171. Kariko K, Buckstein M, Ni H, Weissman D (2005) Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23:165–175

    Article  CAS  PubMed  Google Scholar 

  172. Robbins M, Judge A, Liang L, McClintock K, Yaworski E, MacLachlan I (2007) 2’-O-methyl-modified RNAs act as TLR7 antagonists. Mol Ther 15:1663–1669

    Article  CAS  PubMed  Google Scholar 

  173. Judge AD, Bola G, Lee AC, MacLachlan I (2006) Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther 13:494–505

    Article  CAS  PubMed  Google Scholar 

  174. Whitehead KA, Dahlman JE, Langer RS, Anderson DG (2011) Silencing or stimulation? siRNA delivery and the immune system. Annu Rev Chem Biomol Eng 2:77–96

    Article  CAS  PubMed  Google Scholar 

  175. Cekaite L, Furset G, Hovig E, Sioud M (2007) Gene expression analysis in blood cells in response to unmodified and 2′-modified siRNAs reveals TLR-dependent and independent effects. J Mol Biol 365:90–108

    Article  CAS  PubMed  Google Scholar 

  176. Judge AD, Robbins M, Tavakoli I, Levi J, Hu L, Fronda A, Ambegia E, McClintock K, MacLachlan I (2009) Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice. J Clin Invest 119:661–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Schubert MS, Cedrone E, Neun B, Behlke MA, Dobrovolskaia MA (2018) Chemical modification of CRISPR gRNAs eliminate type I interferon responses in human peripheral blood mononuclear cells. J Cytokine Biol 3:121

    Article  PubMed  PubMed Central  Google Scholar 

  178. Setten RL, Rossi JJ, Han SP (2019) The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov 18:421–446

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim A. Lennox .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lennox, K.A., Behlke, M.A. (2020). Chemical Modifications in RNA Interference and CRISPR/Cas Genome Editing Reagents. In: Sioud, M. (eds) RNA Interference and CRISPR Technologies. Methods in Molecular Biology, vol 2115. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0290-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0290-4_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0289-8

  • Online ISBN: 978-1-0716-0290-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics