Skip to main content

In Vivo Delivery of Cassettes Encoding Anti-HBV Primary MicroRNAs Using an Ancestral Adeno-Associated Viral Vector

  • Protocol
  • First Online:
RNA Interference and CRISPR Technologies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2115))

Abstract

Chronic hepatitis B, a liver disease resulting from persisting hepatitis B virus (HBV) infection, remains a global health challenge despite the availability of an effective vaccine. Various preclinical studies using adeno-associated viruses (AAVs) to deliver anti-HBV RNA interference (RNAi) activators to mediate long-lasting HBV silencing show promise. Recent positive outcomes observed in clinical trials and the FDA approval of AAV-based drugs further demonstrate the potential of AAVs in antiviral therapeutic development. However, the prevalence of neutralizing antibodies against vectors based on extant AVV capsids limits the application of these vectors in human. The exciting reports on in silico designed and in vitro synthesized ancestral AAV (Anc80L65) with a potential to evade prevailing AAV neutralizing antibodies will significantly contribute to the success of these vectors in humans. Here, we describe methods for production and in vivo characterization of Anc80L65 expressing anti-HBV RNAi activators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Naghavi M, Wang H, Lozano R, Davis A, Liang X, Zhou M (2015) Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the global burden of disease study 2013. Lancet 385(9963):117–171

    Article  Google Scholar 

  2. Billioud G, Pichoud C, Puerstinger G, Neyts J, Zoulim F (2011) The main hepatitis B virus (HBV) mutants resistant to nucleoside analogs are susceptible in vitro to non-nucleoside inhibitors of HBV replication. Antivir Res 92(2):271–276

    Article  CAS  PubMed  Google Scholar 

  3. Sypsa VA, Mimidis K, Tassopoulos NC, Chrysagis D, Vassiliadis T, Moulakakis A et al (2005) A viral kinetic study using pegylated interferon alfa-2b and/or lamivudine in patients with chronic hepatitis B/HBeAg negative. Hepatology 42(1):77–85

    Article  CAS  PubMed  Google Scholar 

  4. Carmona S, Ely A, Crowther C, Moolla N, Salazar FH, Marion PL et al (2006) Effective inhibition of HBV replication in vivo by anti-HBx short hairpin RNAs. Mol Ther 13(2):411–421

    Article  CAS  PubMed  Google Scholar 

  5. Giering JC, Grimm D, Storm TA, Kay MA (2008) Expression of shRNA from a tissue-specific pol II promoter is an effective and safe RNAi therapeutic. Mol Ther 16(9):1630–1636

    Article  CAS  PubMed  Google Scholar 

  6. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR et al (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441(7092):537–541

    Article  CAS  PubMed  Google Scholar 

  7. Montgomery MK, Xu S, Fire A (1998) RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc Natl Acad Sci U S A 95(26):15502–15507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Elbashir SM, Lendeckel W (2001) Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15(2):188–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McCaffrey AP, Nakai H, Pandey K, Huang Z, Salazar FH, Xu H et al (2003) Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol 21(6):639–644

    Article  CAS  PubMed  Google Scholar 

  10. Marimani MD, Ely A, Buff MC, Bernhardt S, Engels JW, Scherman D et al (2015) Inhibition of replication of hepatitis B virus in transgenic mice following administration of hepatotropic lipoplexes containing guanidinopropyl-modified siRNAs. J Control Release 209:198–206

    Article  CAS  PubMed  Google Scholar 

  11. Ely A, Naidoo T, Arbuthnot P (2009) Efficient silencing of gene expression with modular trimeric pol II expression cassettes comprising microRNA shuttles. Nucleic Acids Res 37(13):e91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Mowa MB, Crowther C, Ely A, Arbuthnot P (2014) Inhibition of hepatitis B virus replication by helper dependent adenoviral vectors expressing artificial anti-HBV pri-miRs from a liver-specific promoter. Biomed Res Int 2014:718743

    Article  PubMed  PubMed Central  Google Scholar 

  13. Maepa MB, Ely A, Grayson W, Arbuthnot P (2017) Sustained inhibition of HBV replication in vivo after systemic injection of AAVs encoding artificial antiviral primary MicroRNAs. Mol Ther Nucleic Acids 7:190–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ivacik D, Ely A, Ferry N, Arbuthnot P (2015) Sustained inhibition of hepatitis B virus replication in vivo using RNAi-activating lentiviruses. Gene Ther 22(2):163–171

    Article  CAS  PubMed  Google Scholar 

  15. Crowther C, Ely A, Hornby J, Mufamadi S, Salazar F, Marion P et al (2008) Efficient inhibition of hepatitis B virus replication in vivo, using polyethylene glycol-modified adenovirus vectors. Hum Gene Ther 19(11):1325–1331

    Article  CAS  PubMed  Google Scholar 

  16. Qian W, Wang Y, Li RF, Zhou X, Liu J, Peng DZ (2017) Prolonged integration site selection of a lentiviral vector in the genome of human keratinocytes. Med Sci Monit 23:1116–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kassner U, Hollstein T, Grenkowitz T, Wuhle-Demuth M, Salewsky B, Demuth I et al (2018) Gene therapy in lipoprotein lipase deficiency: case report on the first patient treated with alipogene tiparvovec under daily practice conditions. Hum Gene Ther 29(4):520–527

    Article  CAS  PubMed  Google Scholar 

  18. Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F, Bennicelli J et al (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358(21):2240–2248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rafii MS, Baumann TL, Bakay RA, Ostrove JM, Siffert J, Fleisher AS et al (2014) A phase1 study of stereotactic gene delivery of AAV2-NGF for Alzheimer’s disease. Alzheimers Dement 10(5):571–581

    Article  PubMed  Google Scholar 

  20. Zincarelli C, Soltys S, Rengo G, Rabinowitz JE (2008) Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 16(6):1073–1080

    Article  CAS  PubMed  Google Scholar 

  21. Srivastava A, Lusby EW, Berns KI (1983) Nucleotide sequence and organization of the adeno-associated virus 2 genome. J Virol 45(2):555–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Samulski RJ, Muzyczka N (2014) AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev Virol 1(1):427–451

    Article  PubMed  CAS  Google Scholar 

  23. Buller RM, Rose JA (1978) Characterization of adenovirus-associated virus-induced polypeptides in KB cells. J Virol 25(1):331–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kronenberg S, Kleinschmidt JA, Bottcher B (2001) Electron cryo-microscopy and image reconstruction of adeno-associated virus type 2 empty capsids. EMBO Rep 2(11):997–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xie Q, Bu W, Bhatia S, Hare J, Somasundaram T, Azzi A et al (2002) The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc Natl Acad Sci U S A 99(16):10405–10410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Earley LF, Powers JM, Adachi K, Baumgart JT, Meyer NL, Xie Q et al (2017) Adeno-associated virus (AAV) assembly-activating protein is not an essential requirement for capsid assembly of AAV serotypes 4, 5, and 11. J Virol 91(3):epub

    Article  Google Scholar 

  27. Myers MW, Laughlin CA, Jay FT, Carter BJ (1980) Adenovirus helper function for growth of adeno-associated virus: effect of temperature-sensitive mutations in adenovirus early gene region 2. J Virol 35(1):65–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Goncalves MA (2005) Adeno-associated virus: from defective virus to effective vector. Virol J 2:43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zinn E, Pacouret S, Khaychuk V, Turunen HT, Carvalho LS, Andres-Mateos E et al (2015) In silico reconstruction of the viral evolutionary lineage yields a potent gene therapy vector. Cell Rep 12(6):1056–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hermanns J, Schulze A, Jansen-Dburr P, Kleinschmidt JA, Schmidt R, zur Hausen H (1997) Infection of primary cells by adeno-associated virus type 2 results in a modulation of cell cycle-regulating proteins. J Virol 71(8):6020–6027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schmidt M, Afione S, Kotin RM (2000) Adeno-associated virus type 2 Rep78 induces apoptosis through caspase activation independently of p53. J Virol 74(20):9441–9450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ferrari FK, Samulski T, Shenk T, Samulski RJ (1996) Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol 70(5):3227–3234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McCarty DM, Monahan PE, Samulski RJ (2001) Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther 8(16):1248–1254

    Article  CAS  PubMed  Google Scholar 

  34. Ling C, Wang Y, Lu Y, Wang L, Jayandharan GR, Aslanidi GV et al (2015) Enhanced transgene expression from recombinant single-stranded D-sequence-substituted adeno-associated virus vectors in human cell lines in vitro and in murine hepatocytes in vivo. J Virol 89(2):952–961

    Article  PubMed  CAS  Google Scholar 

  35. Dong JY, Fan PD, Frizzell RA (1996) Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Hum Gene Ther 7(17):2101–2112

    Article  CAS  PubMed  Google Scholar 

  36. Chen CC, Sun CP, Ma HI, Fang CC, Wu PY, Xiao X et al (2009) Comparative study of anti-hepatitis B virus RNA interference by double-stranded adeno-associated virus serotypes 7, 8, and 9. Mol Ther 17(2):352–359

    Article  CAS  PubMed  Google Scholar 

  37. Calcedo R, Vandenberghe LH, Gao G, Lin J, Wilson JM (2009) Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J Infect Dis 199(3):381–390

    Article  PubMed  Google Scholar 

  38. Boutin S, Monteilhet V, Veron P, Leborgne C, Benveniste O, Montus MF et al (2010) Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther 21(6):704–712

    Article  CAS  PubMed  Google Scholar 

  39. Calcedo R, Morizono H, Wang L, McCarter R, He J, Jones D et al (2011) Adeno-associated virus antibody profiles in newborns, children, and adolescents. Clin Vaccine Immunol 18(9):1586–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nathwani AC, Tuddenham EG, Rangarajan S, Rosales C, McIntosh J, Linch DC et al (2011) Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 365(25):2357–2365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fitzpatrick Z, Leborgne C, Barbon E, Masat E, Ronziti G, van Wittenberghe L et al (2018) Influence of pre-existing anti-capsid neutralizing and binding antibodies on AAV vector transduction. Mol Ther 9:119–129

    CAS  Google Scholar 

  42. Santiago-Ortiz J, Ojala DS, Westesson O, Weinstein JR, Wong SY, Steinsapir A et al (2015) AAV ancestral reconstruction library enables selection of broadly infectious viral variants. Gene Ther 22(12):934–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carvalho LS, Xiao R, Wassmer SJ, Langsdorf A, Zinn E, Pacouret S et al (2018) Synthetic adeno-associated viral vector efficiently targets mouse and nonhuman primate retina in vivo. Hum Gene Ther 29(7):771–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Suzuki J, Hashimoto K, Xiao R, Vandenberghe LH, Liberman MC (2017) Cochlear gene therapy with ancestral AAV in adult mice: complete transduction of inner hair cells without cochlear dysfunction. Sci Rep 7:45524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gu X, Chai R, Guo L, Dong B, Li W, Shu Y et al (2019) Transduction of adeno-associated virus vectors targeting hair cells and supporting cells in the neonatal mouse cochlea. Front Cell Neurosci 13:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jungmann A, Leuchs B, Rommelaere J, Katus HA, Muller OJ (2017) Protocol for efficient generation and characterization of adeno-associated viral vectors. Hum Gene Ther Methods 28(5):235–246

    Article  CAS  PubMed  Google Scholar 

  47. Grimm D (2002) Production methods for gene transfer vectors based on adeno-associated virus serotypes. Methods 28(2):146–157

    Article  CAS  PubMed  Google Scholar 

  48. Marion PL, Salazar FH, Liittschwager K, Bordier BB, Seegers C, Winters MA et al (2003) A transgenic mouse lineage useful for testing antivirals targeting hepatitis B virus. In: Schinazi RF, Sommadossi J-P, Rice CM (eds) Frontiers in viral hepatitis. Elsevier Science, Amsterdam, pp 197–202

    Chapter  Google Scholar 

  49. Grimm D, Pandey K, Nakai H, Storm TA, Kay MA (2006) Liver transduction with recombinant adeno-associated virus is primarily restricted by capsid serotype not vector genotype. J Virol 80(1):426–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work in the Wits/SAMRC Antiviral Gene Therapy Research Unit is funded by the South African Medical Research Council (SAMRC), South African National Research Foundation (NRF), and Poliomyelitis Research Foundation (PRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohube Betty Maepa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mnyandu, N., Arbuthnot, P., Maepa, M.B. (2020). In Vivo Delivery of Cassettes Encoding Anti-HBV Primary MicroRNAs Using an Ancestral Adeno-Associated Viral Vector. In: Sioud, M. (eds) RNA Interference and CRISPR Technologies. Methods in Molecular Biology, vol 2115. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0290-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0290-4_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0289-8

  • Online ISBN: 978-1-0716-0290-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics