Skip to main content

An Integrated Strategy for Identifying Targets of Ubiquitin-Mediated Degradation in CD4+ T Cells

  • Protocol
  • First Online:
T-Cell Receptor Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2111))

Abstract

Ubiquitination is a crucial component of many immune processes. While ubiquitin-mediated degradation is essential to T cell activation via T cell receptor signaling, the specific E3 ligases and substrates involved are not well-understood. Here, we describe a strategy integrating RNA, protein, and posttranslational modification datasets to identify targets of ubiquitin-mediated degradation. When integrated, these assays can provide broad insight into how this posttranslational modification regulates protein function and influences T cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fang D et al (2002) Dysregulation of T lymphocyte function in itchy mice: a role for Itch in TH2 differentiation. Nat Immunol 3:281–287

    Article  CAS  Google Scholar 

  2. Layman AAK et al (2017) Ndfip1 restricts mTORC1 signalling and glycolysis in regulatory T cells to prevent autoinflammatory disease. Nat Commun. https://doi.org/10.1038/ncomms15677

  3. Layman AAK, Oliver PM (2016) Ubiquitin ligases and deubiquitinating enzymes in CD4+ T cell effector fate choice and function. J Immunol 196:3975–3982

    Article  CAS  Google Scholar 

  4. Dybas JM et al (2019) Integrative proteomics reveals that CD4+ T cell activation promotes predominantly non-degradative ubiquitylation. Nat Immunol 20(6):747–755

    Article  CAS  Google Scholar 

  5. Udeshi ND et al (2013) Refined preparation and use of anti-diglycine remnant (K-e-GG) antibody enables routine quantification of 10,000s of ubiquitination sites in single proteomics experiments. Mol Cell Proteomics 132:825–831

    Article  Google Scholar 

  6. Mertins P et al (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10:634–637

    Article  CAS  Google Scholar 

  7. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2007) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc. https://doi.org/10.1038/nprot.2006.468

    Article  CAS  Google Scholar 

  8. Love MI, Huber W, Anders S (2011) Targeted analysis of nucleotide and copy number variation by exon capture in allotetraploid wheat genome. Genome Biol 15:550

    Article  Google Scholar 

  9. Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4

    Google Scholar 

  10. Dobin A et al (2013) Sequence analysis STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  CAS  Google Scholar 

  11. Dyballa N, Metzger S (2009) Fast and sensitive colloidal Coomassie G-250 staining for proteins in polyacrylamide gels. Part 1: Two-dimensional (2-D) gel electrophoresis using cup-loading Part 2: Colloidal Coomassie staining with CBB G-250. J Vis Exp. https://doi.org/10.3791/1431

  12. Baruzzo G et al (2017) Simulation-based comprehensive benchmarking of RNA-seq aligners HHS Public Access. Nat Methods 14:135–139

    Article  CAS  Google Scholar 

  13. Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11:2301–2319

    Article  CAS  Google Scholar 

  14. Geer LY et al (2004) Open mass spectrometry search algorithm, J Proteome Res. https://doi.org/10.1021/PR0499491

    Article  CAS  Google Scholar 

  15. Tan H et al (2017) Integrative proteomics and phosphoproteomics profiling reveals dynamic signaling networks and bioenergetics pathways underlying T cell activation. Immunity 46:488–503

    Article  CAS  Google Scholar 

  16. Pascovici D, Handler DCL, Wu JX, Haynes PA (2016) Multiple testing corrections in quantitative proteomics: a useful but blunt tool. Proteomics 16:2448–2453. https://doi.org/10.1002/pmic.201600044

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula M. Oliver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Field, N.S., O’Leary, C.E., Dybas, J.M., Ding, H., Oliver, P.M. (2020). An Integrated Strategy for Identifying Targets of Ubiquitin-Mediated Degradation in CD4+ T Cells. In: Liu, C. (eds) T-Cell Receptor Signaling. Methods in Molecular Biology, vol 2111. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0266-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0266-9_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0265-2

  • Online ISBN: 978-1-0716-0266-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics