Skip to main content

Cholinesterase as a Target for Drug Development in Alzheimer’s Disease

  • Protocol
  • First Online:
Targeting Enzymes for Pharmaceutical Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2089))

Abstract

Alzheimer’s disease (AD) is an enormous healthcare challenge, and 50 million people are currently suffering from it. There are several pathophysiological mechanisms involved, but cholinesterase inhibitors remained the major target from the last 2–3 decades. Among four available therapeutics (donepezil, rivastigmine, galantamine, and memantine), three of them are cholinesterase inhibitors. Herein, we describe the role of acetylcholine sterase (AChE) and related hypothesis in AD along with the pharmacological and chemical aspects of the available cholinesterase inhibitors. This chapter discusses the development of several congeners and hybrids of available cholinesterase inhibitors along with their binding patterns in enzyme active sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Whitehouse PJ, Price DL, Struble RG et al (1982) Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215:1237–1239

    Article  CAS  PubMed  Google Scholar 

  2. Patterson C (2018) In: World Alzheimer report 2018. The state of the art of dementia research: new frontiers. London, pp 32–36

    Google Scholar 

  3. Cuijpers Y, Van Lente H (2015) Early diagnostics and Alzheimer’s disease: beyond ‘cure’ and ‘care’. Technol Forecast Soc Change 93:54–67

    Article  Google Scholar 

  4. Hippius H, Neundörfer G (2003) The discovery of Alzheimer’s disease. Dialogues Clin Neurosci 5:101

    PubMed  PubMed Central  Google Scholar 

  5. Forsyth E, Ritzline PD (1998) An overview of the etiology, diagnosis, and treatment of Alzheimer disease. Phys Ther 78:1325–1331

    Article  CAS  PubMed  Google Scholar 

  6. Gold CA, Budson AE (2008) Memory loss in Alzheimer’s disease: implications for development of therapeutics. Expert Rev Neurother 8:1879–1891

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184

    Article  CAS  PubMed  Google Scholar 

  8. Goedert M (1993) Tau protein and the neurofibrillary pathology of Alzheimer’s disease. Trends Neurosci 16:460–465

    Article  CAS  PubMed  Google Scholar 

  9. Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23:134–147

    Article  CAS  PubMed  Google Scholar 

  10. Bartus RT, Dean RR, Beer B et al (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–414

    Article  CAS  PubMed  Google Scholar 

  11. Hooper C, Killick R, Lovestone S (2008) The GSK3 hypothesis of Alzheimer’s disease. J Neurochem 104:1433–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Qu T, Manev R, Manev H (2001) 5-Lipoxygenase (5-LOX) promoter polymorphism in patients with early-onset and late-onset Alzheimer’s disease. J Neuropsychiatry Clin Neurosci 13:304–305

    Article  CAS  PubMed  Google Scholar 

  13. Cole SL, Vassar R (2007) The Alzheimer’s disease β-secretase enzyme, BACE1. Mol Neurodegener 2:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Talesa VN (2001) Acetylcholinesterase in Alzheimer’s disease. Mech Ageing Dev 122:1961–1969

    Article  CAS  PubMed  Google Scholar 

  15. Shrivastava SK, Sinha SK, Srivastava P et al (2019) Design and development of novel p-aminobenzoic acid derivatives as potential cholinesterase inhibitors for the treatment of Alzheimer’s disease. Bioorg Chem 82:211–223

    Article  CAS  PubMed  Google Scholar 

  16. Srivastava P, Tripathi PN, Sharma P et al (2019) Design and development of some phenyl benzoxazole derivatives as a potent acetylcholinesterase inhibitor with antioxidant property to enhance learning and memory. Eur J Med Chem 163:116–135

    Article  CAS  PubMed  Google Scholar 

  17. Tripathi PN, Srivastava P, Sharma P et al (2018) Biphenyl-3-oxo-1, 2, 4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory. Bioorg Chem 85:82–96

    Article  CAS  PubMed  Google Scholar 

  18. Kumar M, Sharma P, Maheshwari R et al (2018) Beyond the blood–brain barrier: facing new challenges and prospects of nanotechnology-mediated targeted delivery to the brain. In: Nanotechnology-based targeted drug delivery systems for brain tumors. Elsevier, pp 397–437

    Google Scholar 

  19. Shrivastava SK, Srivastava P, Upendra T et al (2017) Design, synthesis and evaluation of some N-methylenebenzenamine derivatives as selective acetylcholinesterase (AChE) inhibitor and antioxidant to enhance learning and memory. Biorg Med Chem 25:1471–1480

    Article  CAS  Google Scholar 

  20. Sinha SK, Shrivastava SK (2013) Synthesis, evaluation and molecular dynamics study of some new 4-aminopyridine semicarbazones as an antiamnesic and cognition enhancing agents. Biorg Med Chem 21:5451–5460

    Article  CAS  Google Scholar 

  21. Sinha SK, Shrivastava SK (2013) Design, synthesis and evaluation of some new 4-aminopyridine derivatives in learning and memory. Bioorg Med Chem Lett 23:2984–2989

    Article  CAS  PubMed  Google Scholar 

  22. Sinha SK, Shrivastava SK (2012) Synthesis and evaluation of some new 4-aminopyridine derivatives as a potent antiamnesic and cognition enhancing drugs. Med Chem Res 21:4395–4402

    Article  CAS  Google Scholar 

  23. Tripathi PN, Srivastava P, Sharma P et al (2019) Design and development of novel N-(pyrimidin-2-yl)-1, 3, 4-oxadiazole hybrids to treat cognitive dysfunctions. Biorg Med Chem 27:1327–1340

    Article  CAS  Google Scholar 

  24. Rosini M, Simoni E, Minarini A et al (2014) Multi-target design strategies in the context of Alzheimer’s disease: acetylcholinesterase inhibition and NMDA receptor antagonism as the driving forces. Neurochem Res 39:1914–1923

    Article  CAS  PubMed  Google Scholar 

  25. Rosini M, Simoni E, Bartolini M et al (2008) Inhibition of acetylcholinesterase, β-amyloid aggregation, and NMDA receptors in Alzheimer’s disease: a promising direction for the multi-target-directed ligands gold rush. J Med Chem 51:4381–4384

    Article  CAS  PubMed  Google Scholar 

  26. Hogan DB (2007) Progress update: pharmacological treatment of Alzheimer’s disease. Neuropsychiatr Dis Treat 3:569

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sharma P, Srivastava P, Seth A et al (2019) Comprehensive review of mechanisms of pathogenesis involved in Alzheimer’s disease and potential therapeutic strategies. Prog Neurobiol 174:53–89

    Article  CAS  PubMed  Google Scholar 

  28. Davies P, Maloney A (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 308:1403

    Article  Google Scholar 

  29. Thompson P, Wright D, Counsell CE et al (2012) Statistical analysis, trial design and duration in Alzheimer’s disease clinical trials: a review. Int Psychogeriatr 24:689–697

    Article  CAS  PubMed  Google Scholar 

  30. Hebb C (1972) Biosynthesis of acetylcholine in nervous tissue. Physiol Rev 52:918–957

    Article  CAS  PubMed  Google Scholar 

  31. Bartus RT (2000) On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp Neurol 163:495–529

    Article  CAS  PubMed  Google Scholar 

  32. Lanctôt KL, Herrmann N, Yau KK et al (2003) Efficacy and safety of cholinesterase inhibitors in Alzheimer’s disease: a meta-analysis. Can Med Assoc J 169:557–564

    Google Scholar 

  33. Taylor P (1998) Development of acetylcholinesterase inhibitors in the therapy of Alzheimer’s disease. Neurology 51:S30–S35

    Article  CAS  PubMed  Google Scholar 

  34. Pezzementi L, Nachon F, Chatonnet A (2011) Evolution of acetylcholinesterase and butyrylcholinesterase in the vertebrates: an atypical butyrylcholinesterase from the Medaka Oryzias latipes. PLoS One 6:e17396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Darvesh S, Hopkins DA, Geula C (2003) Neurobiology of butyrylcholinesterase. Nat Rev Neurosci 4:131

    Article  CAS  PubMed  Google Scholar 

  36. Behra M, Cousin X, Bertrand C et al (2002) Acetylcholinesterase is required for neuronal and muscular development in the zebrafish embryo. Nat Neurosci 5:111

    Article  CAS  PubMed  Google Scholar 

  37. Darvesh S, Cash MK, Reid GA et al (2012) Butyrylcholinesterase is associated with β-amyloid plaques in the transgenic APPSWE/PSEN1dE9 mouse model of Alzheimer disease. J Neuropathol Exp Neurol 71:2–14

    Article  CAS  PubMed  Google Scholar 

  38. Cousin X, Hotelier T, Giles K et al (1998) aCHEdb: the database system for ESTHER, the α/β fold family of proteins and the Cholinesterase gene server. Nucleic Acids Res 26:226–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Holzgrabe U, Kapková P, Alptüzün V et al (2007) Targeting acetylcholinesterase to treat neurodegeneration. Expert Opin Ther Targets 11:161–179

    Article  CAS  PubMed  Google Scholar 

  40. Nicolet Y, Lockridge O, Masson P et al (2003) Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J Biol Chem 278:41141–41147

    Article  CAS  PubMed  Google Scholar 

  41. Moral-Naranjo MT, Cabezas-Herrera J, Campoy FJ et al (1997) Glycosylation of cholinesterase forms in brain from normal and dystrophic Lama2dy mice. Neurosci Lett 226:45–48

    Article  CAS  PubMed  Google Scholar 

  42. Saxena A, Redman AM, Jiang X et al (1997) Differences in active site gorge dimensions of cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase. Biochemistry 36:14642–14651

    Article  CAS  PubMed  Google Scholar 

  43. Kryger G, Silman I, Sussman JL (1999) Structure of acetylcholinesterase complexed with E2020 (Aricept®): implications for the design of new anti-Alzheimer drugs. Structure 7:297–307

    Article  CAS  PubMed  Google Scholar 

  44. Almeida JSD, Cavalcante SFDA, Dolezal R et al (2019) Molecular modeling studies on the interactions of aflatoxin B1 and its metabolites with the peripheral anionic site (PAS) of human acetylcholinesterase. J Biomol Struct Dyn 37(8):2041–2048

    Article  CAS  PubMed  Google Scholar 

  45. Inestrosa NC, Alvarez A, Perez CA et al (1996) Acetylcholinesterase accelerates assembly of amyloid-β-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron 16:881–891

    Article  CAS  PubMed  Google Scholar 

  46. Zhang Y, Kua J, Mccammon JA (2002) Role of the catalytic triad and oxyanion hole in acetylcholinesterase catalysis: an ab initio QM/MM study. J Am Chem Soc 124:10572–10577

    Article  CAS  PubMed  Google Scholar 

  47. Ordentlich A, Barak D, Kronman C et al (1998) Functional characteristics of the oxyanion hole in human acetylcholinesterase. J Biol Chem 273:19509–19517

    Article  CAS  PubMed  Google Scholar 

  48. Bajda M, Więckowska A, Hebda M et al (2013) Structure-based search for new inhibitors of cholinesterases. Int J Mol Sci 14:5608–5632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Whitehead A, Perdomo C, Pratt RD et al (2004) Donepezil for the symptomatic treatment of patients with mild to moderate Alzheimer’s disease: a meta-analysis of individual patient data from randomised controlled trials. Int J Geriatr Psychiatry 19:624–633

    Article  PubMed  Google Scholar 

  50. Sharma P, Tripathi A, Tripathi PN et al (2019) Design and development of multitarget-directed N-benzylpiperidine analogs as potential candidates for the treatment of Alzheimer’s disease. Eur J Med Chem 167:510–524

    Article  CAS  PubMed  Google Scholar 

  51. Camps P, Formosa X, Galdeano C et al (2008) Novel donepezil-based inhibitors of acetyl-and butyrylcholinesterase and acetylcholinesterase-induced β-amyloid aggregation. J Med Chem 51:3588–3598

    Article  CAS  PubMed  Google Scholar 

  52. Kume T, Sugimoto M, Takada Y et al (2005) Up-regulation of nicotinic acetylcholine receptors by central-type acetylcholinesterase inhibitors in rat cortical neurons. Eur J Pharmacol 527:77–85

    Article  CAS  PubMed  Google Scholar 

  53. Tiseo P, Rogers S, Friedhoff L (1998) Pharmacokinetic and pharmacodynamic profile of donepezil HCl following evening administration. Br J Clin Pharmacol 46:13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sugimoto H, Ogura H, Arai Y et al (2002) Research and development of donepezil hydrochloride, a new type of acetylcholinesterase inhibitor. Jpn J Pharmacol 89:7–20

    Article  CAS  PubMed  Google Scholar 

  55. Sugimoto H, Yamanish Y, Iimura Y et al (2000) Donepezil hydrochloride (E2020) and other acetylcholinesterase inhibitors. Curr Med Chem 7:303–339

    Article  CAS  PubMed  Google Scholar 

  56. Andreani A, Cavalli A, Granaiola M et al (2001) Synthesis and screening for Antiacetylcholinesterase activity of (1-benzyl-4-oxopiperidin-3-ylidene) methylindoles and-pyrroles related to donepezil. J Med Chem 44:4011–4014

    Article  CAS  PubMed  Google Scholar 

  57. Contreras J-M, Rival YM, Chayer S et al (1999) Aminopyridazines as acetylcholinesterase inhibitors. J Med Chem 42:730–741

    Article  CAS  PubMed  Google Scholar 

  58. Omran Z, Cailly T, Lescot E et al (2005) Synthesis and biological evaluation as AChE inhibitors of new indanones and thiaindanones related to donepezil. Eur J Med Chem 40:1222–1245

    Article  CAS  PubMed  Google Scholar 

  59. Więckowska A, Więckowski K, Bajda M et al (2015) Synthesis of new N-benzylpiperidine derivatives as cholinesterase inhibitors with β-amyloid anti-aggregation properties and beneficial effects on memory in vivo. Biorg Med Chem 23:2445–2457

    Article  CAS  Google Scholar 

  60. Shidore M, Machhi J, Shingala K et al (2016) Benzylpiperidine-linked diarylthiazoles as potential anti-Alzheimer’s agents: synthesis and biological evaluation. J Med Chem 59:5823–5846

    Article  CAS  PubMed  Google Scholar 

  61. Costanzo P, Cariati L, Desiderio D et al (2016) Design, synthesis, and evaluation of donepezil-like compounds as AChE and BACE-1 inhibitors. ACS Med Chem Lett 7:470–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Caliandro R, Pesaresi A, Cariati L et al (2018) Kinetic and structural studies on the interactions of Torpedo californica acetylcholinesterase with two donepezil-like rigid analogues. J Enzyme Inhib Med Chem 33:794–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Villarroya M, García AG, Marco-Contelles J et al (2007) An update on the pharmacology of galantamine. Expert Opin Investig Drugs 16:1987–1998

    Article  CAS  PubMed  Google Scholar 

  64. Heinrich M, Teoh HL (2004) Galanthamine from snowdrop—the development of a modern drug against Alzheimer’s disease from local Caucasian knowledge. J Ethnopharmacol 92:147–162

    Article  CAS  PubMed  Google Scholar 

  65. Maelicke A, Samochocki M, Jostock R et al (2001) Allosteric sensitization of nicotinic receptors by galantamine, a new treatment strategy for Alzheimer’s disease. Biol Psychiatry 49:279–288

    Article  CAS  PubMed  Google Scholar 

  66. Farlow MR (2003) Clinical pharmacokinetics of galantamine. Clin Pharmacokinet 42:1383–1392

    Article  CAS  PubMed  Google Scholar 

  67. Cheung J, Rudolph MJ, Burshteyn F et al (2012) Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem 55:10282–10286

    Article  CAS  PubMed  Google Scholar 

  68. Fang L, Fang X, Gou S et al (2014) Design, synthesis and biological evaluation of D-ring opened galantamine analogs as multifunctional anti-Alzheimer agents. Eur J Med Chem 76:376–386

    Article  CAS  PubMed  Google Scholar 

  69. Guzior N, Wieckowska A, Panek D et al (2015) Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer’s disease. Curr Med Chem 22:373–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Atanasova M, Yordanov N, Dimitrov I et al (2015) Molecular docking study on galantamine derivatives as cholinesterase inhibitors. Mol Inform 34:394–403

    Article  CAS  PubMed  Google Scholar 

  71. Polinsky RJ (1998) Clinical pharmacology of rivastigmine: a new-generation acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease. Clin Ther 20:634–647

    Article  CAS  PubMed  Google Scholar 

  72. Gottwald MD, Rozanski RI (1999) Rivastigmine, a brain-region selective acetylcholinesterase inhibitor for treating Alzheimer’s disease: review and current status. Expert Opin Investig Drugs 8:1673–1682

    Article  CAS  PubMed  Google Scholar 

  73. Jann MW, Shirley KL, Small GW (2002) Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin Pharmacokinet 41:719–739

    Article  CAS  PubMed  Google Scholar 

  74. Bolognesi ML, Bartolini M, Cavalli A et al (2004) Design, synthesis, and biological evaluation of conformationally restricted rivastigmine analogues. J Med Chem 47:5945–5952

    Article  CAS  PubMed  Google Scholar 

  75. Wang L, Wang Y, Tian Y et al (2017) Design, synthesis, biological evaluation, and molecular modeling studies of chalcone-rivastigmine hybrids as cholinesterase inhibitors. Biorg Med Chem 25:360–371

    Article  CAS  Google Scholar 

  76. Crismon ML (1994) Tacrine: first drug approved for Alzheimer’s disease. Ann Pharmacother 28:744–751

    Article  CAS  PubMed  Google Scholar 

  77. Pohanka M (2011) Cholinesterases, a target of pharmacology and toxicology. Biomed Pap Med Fac Palacky Univ Olomouc 155(3):219–229

    Article  CAS  Google Scholar 

  78. Harel M, Schalk I, Ehret-Sabatier L et al (1993) Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc Natl Acad Sci U S A 90:9031–9035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Blackard WG Jr, Sood GK, Crowe DR et al (1998) Tacrine: a cause of fatal hepatotoxicity? J Clin Gastroenterol 26:57–59

    Article  PubMed  Google Scholar 

  80. Pessayre D, Mansouri A, Haouzi D et al (1999) Hepatotoxicity due to mitochondrial dysfunction. Cell Biol Toxicol 15:367–373

    Article  CAS  PubMed  Google Scholar 

  81. Lagadic-Gossmann D, Rissel M, Le Bot M et al (1998) Toxic effects of tacrine on primary hepatocytes and liver epithelial cells in culture. Cell Biol Toxicol 14:361–373

    Article  CAS  PubMed  Google Scholar 

  82. Tumiatti V, Minarini A, Bolognesi M et al (2010) Tacrine derivatives and Alzheimer’s disease. Curr Med Chem 17:1825–1838

    Article  CAS  PubMed  Google Scholar 

  83. Minarini A, Milelli A, Tumiatti V et al (2012) Cystamine-tacrine dimer: a new multi-target-directed ligand as potential therapeutic agent for Alzheimer’s disease treatment. Neuropharmacology 62:997–1003

    Article  CAS  PubMed  Google Scholar 

  84. Recanatini M, Cavalli A, Belluti F et al (2000) SAR of 9-amino-1,2,3,4-tetrahydroacridine-based acetylcholinesterase inhibitors: synthesis, enzyme inhibitory activity, QSAR, and structure-based CoMFA of tacrine analogues. J Med Chem 43:2007–2018

    Article  CAS  PubMed  Google Scholar 

  85. Tang H, Zhao L-Z, Zhao H-T et al (2011) Hybrids of oxoisoaporphine-tacrine congeners: novel acetylcholinesterase and acetylcholinesterase-induced β-amyloid aggregation inhibitors. Eur J Med Chem 46:4970–4979

    Article  CAS  PubMed  Google Scholar 

  86. Mao F, Huang L, Luo Z et al (2012) O-hydroxyl-or o-amino benzylamine-tacrine hybrids: multifunctional biometals chelators, antioxidants, and inhibitors of cholinesterase activity and amyloid-β aggregation. Biorg Med Chem 20:5884–5892

    Article  CAS  Google Scholar 

  87. Jin H, Nguyen T, Go M (2014) Acetylcholinesterase and butyrylcholinesterase inhibitory properties of functionalized tetrahydroacridines and related analogs. Med Chem (Los Angeles) 4(10):688–696

    Google Scholar 

  88. Nepovimova E, Korabecny J, Dolezal R et al (2015) Tacrine–trolox hybrids: a novel class of centrally active, nonhepatotoxic multi-target-directed ligands exerting anticholinesterase and antioxidant activities with low in vivo toxicity. J Med Chem 58:8985–9003

    Article  CAS  PubMed  Google Scholar 

  89. Quintanova C, Keri RS, Marques SM et al (2015) Design, synthesis and bioevaluation of tacrine hybrids with cinnamate and cinnamylidene acetate derivatives as potential anti-Alzheimer drugs. MedChemComm 6:1969–1977

    Article  CAS  Google Scholar 

  90. Sameem B, Saeedi M, Mahdavi M et al (2017) A review on tacrine-based scaffolds as multi-target drugs (MTDLs) for Alzheimer’s disease. Eur J Med Chem 128:332–345

    Article  CAS  PubMed  Google Scholar 

  91. Small G, Bullock R (2011) Defining optimal treatment with cholinesterase inhibitors in Alzheimer’s disease. Alzheimers Dement 7:177–184

    Article  CAS  PubMed  Google Scholar 

  92. Gauthier S (2001) Cholinergic adverse effects of cholinesterase inhibitors in Alzheimer’s disease. Drugs Aging 18:853–862

    Article  CAS  PubMed  Google Scholar 

  93. Jiang S, Li Y, Zhang C et al (2014) M1 muscarinic acetylcholine receptor in Alzheimer’s disease. Neurosci Bull 30:295–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Maelicke A, Albuquerque EX (2000) Allosteric modulation of nicotinic acetylcholine receptors as a treatment strategy for Alzheimer’s disease. Eur J Pharmacol 393:165–170

    Article  CAS  PubMed  Google Scholar 

  95. Korabecny J, Andrs M, Nepovimova E et al (2015) 7-Methoxytacrine-p-anisidine hybrids as novel dual binding site acetylcholinesterase inhibitors for Alzheimer’s disease treatment. Molecules 20:22084–22101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ceschi MA, Da Costa JS, Lopes JPB et al (2016) Novel series of tacrine-tianeptine hybrids: synthesis, cholinesterase inhibitory activity, S100B secretion and a molecular modeling approach. Eur J Med Chem 121:758–772

    Article  CAS  PubMed  Google Scholar 

  97. Zha X, Lamba D, Zhang L et al (2015) Novel tacrine–benzofuran hybrids as potent multitarget-directed ligands for the treatment of Alzheimer’s disease: design, synthesis, biological evaluation, and X-ray crystallography. J Med Chem 59:114–131

    Article  CAS  PubMed  Google Scholar 

  98. Benek O, Soukup O, Pasdiorova M et al (2016) Design, synthesis and in vitro evaluation of indolotacrine analogues as multitarget-directed ligands for the treatment of Alzheimer’s disease. ChemMedChem 11:1264–1269

    Article  CAS  PubMed  Google Scholar 

  99. Keri RS, Quintanova C, Chaves S et al (2016) New tacrine hybrids with natural-based cysteine derivatives as multitargeted drugs for potential treatment of Alzheimer’s disease. Chem Biol Drug Des 87:101–111

    Article  CAS  PubMed  Google Scholar 

  100. Najafi Z, Mahdavi M, Saeedi M et al (2017) Novel tacrine-1,2,3-triazole hybrids: in vitro, in vivo biological evaluation and docking study of cholinesterase inhibitors. Eur J Med Chem 125:1200–1212

    Article  CAS  PubMed  Google Scholar 

  101. Jeřábek J, Uliassi E, Guidotti L et al (2017) Tacrine-resveratrol fused hybrids as multi-target-directed ligands against Alzheimer’s disease. Eur J Med Chem 127:250–262

    Article  CAS  PubMed  Google Scholar 

  102. Spilovska K, Korabecny J, Sepsova V et al (2017) Novel tacrine-scutellarin hybrids as multipotent anti-Alzheimer’s agents: design, synthesis and biological evaluation. Molecules 22:1006

    Article  CAS  PubMed Central  Google Scholar 

  103. Chioua M, Buzzi E, Moraleda I et al (2018) Tacripyrimidines, the first tacrine-dihydropyrimidine hybrids, as multi-target-directed ligands for Alzheimer’s disease. Eur J Med Chem 155:839

    Article  CAS  PubMed  Google Scholar 

  104. Lopes JPB, Silva L, Da Costa Franarin G et al (2018) Design, synthesis, cholinesterase inhibition and molecular modelling study of novel tacrine hybrids with carbohydrate derivatives. Biorg Med Chem 26:5566–5577

    Article  CAS  Google Scholar 

  105. Chand K, Candeias E, Cardoso SM et al (2018) Tacrine–deferiprone hybrids as multi-target-directed metal chelators against Alzheimer’s disease: a two-in-one drug. Metallomics 10:1460–1475

    Article  CAS  PubMed  Google Scholar 

  106. Cheng Z-Q, Zhu K-K, Zhang J et al (2019) Molecular-docking-guided design and synthesis of new IAA-tacrine hybrids as multifunctional AChE/BChE inhibitors. Bioorg Chem 83:277–288

    Article  CAS  PubMed  Google Scholar 

  107. Lu C, Zhou Q, Yan J et al (2013) A novel series of tacrine–selegiline hybrids with cholinesterase and monoamine oxidase inhibition activities for the treatment of Alzheimer’s disease. Eur J Med Chem 62:745–753

    Article  CAS  PubMed  Google Scholar 

  108. Fang L, Appenroth D, Decker M et al (2008) Synthesis and biological evaluation of NO-donor-tacrine hybrids as hepatoprotective anti-Alzheimer drug candidates. J Med Chem 51:713–716

    Article  CAS  PubMed  Google Scholar 

  109. Rosini M, Andrisano V, Bartolini M et al (2005) Rational approach to discover multipotent anti-Alzheimer drugs. J Med Chem 48:360–363

    Article  CAS  PubMed  Google Scholar 

  110. Thiratmatrakul S, Yenjai C, Waiwut P et al (2014) Synthesis, biological evaluation and molecular modeling study of novel tacrine–carbazole hybrids as potential multifunctional agents for the treatment of Alzheimer’s disease. Eur J Med Chem 75:21–30

    Article  CAS  PubMed  Google Scholar 

  111. FernáNdez-Bachiller MI, PéRez CN, Monjas L et al (2012) New tacrine–4-oxo-4 H-chromene hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with cholinergic, antioxidant, and β-amyloid-reducing properties. J Med Chem 55:1303–1317

    Article  CAS  PubMed  Google Scholar 

  112. Rodríguez-Franco MI, Fernández-Bachiller MI, Pérez C et al (2006) Novel tacrine−melatonin hybrids as dual-acting drugs for Alzheimer disease, with improved acetylcholinesterase inhibitory and antioxidant properties. J Med Chem 49:459–462

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Department of Health Research (DHR), Ministry of Health and Family Welfare (MHFW), Government of India, New Delhi for providing Young Scientist grant to Mr. Piyoosh Sharma in newer areas of Drug Chemistry (25011/215-HRD/2016-HR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushant Kumar Shrivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sharma, P., Tripathi, M.K., Shrivastava, S.K. (2020). Cholinesterase as a Target for Drug Development in Alzheimer’s Disease. In: Labrou, N. (eds) Targeting Enzymes for Pharmaceutical Development. Methods in Molecular Biology, vol 2089. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0163-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0163-1_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0162-4

  • Online ISBN: 978-1-0716-0163-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics