Skip to main content

Electrophoretic Mobility Shift Assays with GFP-Tagged Proteins (GFP-EMSA)

  • Protocol
  • First Online:
Targeting Enzymes for Pharmaceutical Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2089))

Abstract

The electrophoretic mobility shift assay (EMSA) is commonly used for the study of nucleic acid-binding proteins. The technique can be used to demonstrate that a protein is binding to RNA or DNA through visualization of a shift in electrophoretic mobility of the nucleic acid band. A major disadvantage of the EMSA is that it does not always provide an absolute certitude that the band shift is due to the protein under scrutiny, as contaminants in the sample could also cause the band shift. Here we describe a variation of the standard EMSA allowing to visualize with added certitude, the co-localized band shifts of a GFP-tagged protein binding to its cognate nucleic acid target sequence stained with an intercalator, such as GelRed. Herein, we present an illustrative protocol of this useful technique called GFP-EMSA along with specific notes on its advantages and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miyagi T, Shiotani B, Miyoshi R, Yamamoto T, Oka T, Umezawa K, Ochiya T, Takano M, Tahara H (2014) DSE-FRET: a new anticancer drug screening assay for DNA binding proteins. Cancer Sci 105(7):870–874. https://doi.org/10.1111/cas.12420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alonso N, Guillen R, Chambers JW, Leng F (2015) A rapid and sensitive high-throughput screening method to identify compounds targeting protein-nucleic acids interactions. Nucleic Acids Res 43(8):e52. https://doi.org/10.1093/nar/gkv069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hellman LM, Fried MG (2007) Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat Protoc 2(8):1849–1861. https://doi.org/10.1038/nprot.2007.249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Moreau MJ, Morin I, Schaeffer PM (2010) Quantitative determination of protein stability and ligand binding using a green fluorescent protein reporter system. Mol BioSyst 6(7):1285–1292. https://doi.org/10.1039/c002001j

    Article  CAS  PubMed  Google Scholar 

  5. Askin SP, Bond TEH, Schaeffer PM (2016) Green fluorescent protein-based assays for high-throughput functional characterization and ligand-binding studies of biotin protein ligase. Anal Methods 8(2):418–424

    Article  CAS  Google Scholar 

  6. Dahdah DB, Morin I, Moreau MJ, Dixon NE, Schaeffer PM (2009) Site-specific covalent attachment of DNA to proteins using a photoactivatable Tus-Ter complex. Chem Commun (Camb) (21):3050–3052. https://doi.org/10.1039/b900905a

  7. Johnston EB, Kamath SD, Lopata AL, Schaeffer PM (2014) Tus-Ter-lock immuno-PCR assays for the sensitive detection of tropomyosin-specific IgE antibodies. Bioanalysis 6(4):465–476. https://doi.org/10.4155/bio.13.315

    Article  CAS  PubMed  Google Scholar 

  8. Morin I, Schaeffer PM (2012) Combining RNA-DNA swapping and quantitative polymerase chain reaction for the detection of influenza A nucleoprotein. Anal Biochem 420(2):121–126. https://doi.org/10.1016/j.ab.2011.09.009

    Article  CAS  PubMed  Google Scholar 

  9. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, vol 3, 4th edn. Cold Springs Hoarbour Laboratory Press, New York

    Google Scholar 

  10. Fukuda H, Arai M, Kuwajima K (2000) Folding of green fluorescent protein and the cycle3 mutant. Biochemistry 39(39):12025–12032

    Article  CAS  PubMed  Google Scholar 

  11. Wang L, Xie J, Deniz AA, Schultz PG (2003) Unnatural amino acid mutagenesis of green fluorescent protein. J Org Chem 68(1):174–176. https://doi.org/10.1021/jo026570u

    Article  CAS  PubMed  Google Scholar 

  12. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12):1567–1572. https://doi.org/10.1038/nbt1037

    Article  CAS  PubMed  Google Scholar 

  13. Moreau MJ, Schaeffer PM (2013) Dissecting the salt dependence of the Tus-Ter protein-DNA complexes by high-throughput differential scanning fluorimetry of a GFP-tagged Tus. Mol BioSyst 9(12):3146–3154. https://doi.org/10.1039/c3mb70426b

    Article  CAS  PubMed  Google Scholar 

  14. Tabor S, Richardson CC (1985) A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A 82(4):1074–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dubendorff JW, Studier FW (1991) Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor. J Mol Biol 219(1):45–59

    Article  CAS  PubMed  Google Scholar 

  16. Chalfie M (1995) Green fluorescent protein. Photochem Photobiol 62(4):651–656

    Article  CAS  PubMed  Google Scholar 

  17. Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90(3):1103–1163. https://doi.org/10.1152/physrev.00038.2009

    Article  CAS  PubMed  Google Scholar 

  18. Straight AF, Belmont AS, Robinett CC, Murray AW (1996) GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr Biol 6(12):1599–1608

    Article  CAS  PubMed  Google Scholar 

  19. Mortusewicz O, Schermelleh L, Walter J, Cardoso MC, Leonhardt H (2005) Recruitment of DNA methyltransferase I to DNA repair sites. Proc Natl Acad Sci U S A 102(25):8905–8909. https://doi.org/10.1073/pnas.0501034102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lindhout BI, Fransz P, Tessadori F, Meckel T, Hooykaas PJ, van der Zaal BJ (2007) Live cell imaging of repetitive DNA sequences via GFP-tagged polydactyl zinc finger proteins. Nucleic Acids Res 35(16):e107. https://doi.org/10.1093/nar/gkm618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Delpech F, Collien Y, Mahou P, Beaurepaire E, Myllykallio H, Lestini R (2018) Snapshots of archaeal DNA replication and repair in living cells using super-resolution imaging. Nucleic Acids Res. https://doi.org/10.1093/nar/gky829

  22. Spirin AS, Swartz JR (2008) Cell-free protein synthesis: methods and protocols. Wiley, Weinheim

    Google Scholar 

  23. Vagenende V, Yap MG, Trout BL (2009) Mechanisms of protein stabilization and prevention of protein aggregation by glycerol. Biochemistry 48(46):11084–11096. https://doi.org/10.1021/bi900649t

    Article  CAS  PubMed  Google Scholar 

  24. Beckett D, Kovaleva E, Schatz PJ (1999) A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation. Protein Sci 8(4):921–929. https://doi.org/10.1110/ps.8.4.921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eisenstein E, Beckett D (1999) Dimerization of the Escherichia coli biotin repressor: corepressor function in protein assembly. Biochemistry 38(40):13077–13084

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick M. Schaeffer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sorenson, A.E., Schaeffer, P.M. (2020). Electrophoretic Mobility Shift Assays with GFP-Tagged Proteins (GFP-EMSA). In: Labrou, N. (eds) Targeting Enzymes for Pharmaceutical Development. Methods in Molecular Biology, vol 2089. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0163-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0163-1_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0162-4

  • Online ISBN: 978-1-0716-0163-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics