Skip to main content

Lipid Bilayer Patterns Fabrication by One-Photon Lithography

  • Protocol
  • First Online:
Chemical and Synthetic Approaches in Membrane Biology

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

In the last decade, there has been an increasing interest in patterning surfaces with supported lipid bilayers. The ability of this system to control molecular composition and mobility of this system at micro- and nanoscales have inspired several new routes of biological and biotechnological investigation. Successes in this field include the development of photolithographic and soft lithography techniques which allow the printing of a variety of biomolecules on different substrates. Here, we describe a simple, flexible, and inexpensive protocol for the generation of lipid bilayer micropatterns based on one-photon lithography and microcontact printing (μCP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Groves JT, Dustin ML (2003) Supported planar bilayers in studies on immune cell adhesion and communication. J Immunol Methods 278:19–32

    Article  CAS  PubMed  Google Scholar 

  2. Mouritsen OG (2011) Model answers to lipid membrane questions. Cold Spring Harb Perspect Biol 3:a004622

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sackmann E, Tanaka M (2000) Supported membranes on soft polymer cushions: fabrication, characterization and applications. Trends Biotechnol 18:58–64

    Article  CAS  PubMed  Google Scholar 

  4. Tamm LK, McConnell HM (1985) Supported phospholipid bilayers. Biophys J 47:105–113. doi:10.1016/S0006-3495(85)83882-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boxer SG (2000) Molecular transport and organization in supported lipid membranes. Curr Opin Chem Biol 4:704–709

    Article  CAS  PubMed  Google Scholar 

  6. Nicolson GL (2014) The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim Biophys Acta 1838:1451–1466

    Article  CAS  PubMed  Google Scholar 

  7. Manz BN, Groves JT (2010) Spatial organization and signal transduction at intercellular junctions. Nat Rev Mol Cell Biol 11:342–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brian AA, McConnell HM (1984) Allogeneic stimulation of cytotoxic T cells by supported planar membranes. Proc Natl Acad Sci 81:6159–6163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chan P-Y et al (1991) Influence of receptor lateral mobility on adhesion strengthening between membranes containing LFA-3 and CD2. J Cell Biol 115:245–255

    Article  CAS  PubMed  Google Scholar 

  10. Grakoui A et al (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–227

    Article  CAS  PubMed  Google Scholar 

  11. Sánchez MF, Levi V, Weidemann T, Carrer DC (2015) Agonist mobility on supported lipid bilayers affects Fas mediated death response. FEBS Lett 589:3527–3533

    Article  PubMed  Google Scholar 

  12. Richter RP, Bérat R, Brisson AR (2006) Formation of solid-supported lipid bilayers: an integrated view. Langmuir 22:3497–3505

    Article  CAS  PubMed  Google Scholar 

  13. Tepass U, Tanentzapf G, Ward R, Fehon R (2001) Epithelial cell polarity and cell junctions in Drosophila. Annu Rev Genet 35:747–784

    Article  CAS  PubMed  Google Scholar 

  14. Brown D, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    Article  CAS  PubMed  Google Scholar 

  15. Dykstra M, Cherukuri A, Sohn HW, Tzeng S-J, Pierce SK (2003) Location is everything: lipid rafts and immune cell signaling. Annu Rev Immunol 21:457–481. doi:10.1146/annurev.immunol.21.120601.141021

    Article  CAS  PubMed  Google Scholar 

  16. Zhao X-M, Xia Y, Whitesides GM (1997) Soft lithographic methods for nano-fabrication. J Mater Chem 7:1069–1074

    Article  CAS  Google Scholar 

  17. Rai-Choudhury P (1997) Handbook of microlithography, micromachining, and microfabrication: microlithography, vol 1. Iet

    Google Scholar 

  18. Dontha N, Nowall WB, Kuhr WG (1997) Generation of biotin/avidin/enzyme nanostructures with maskless photolithography. Anal Chem 69:2619–2625

    Article  CAS  PubMed  Google Scholar 

  19. Revzin A et al (2001) Fabrication of poly (ethylene glycol) hydrogel microstructures using photolithography. Langmuir 17:5440–5447

    Article  CAS  PubMed  Google Scholar 

  20. Guo LJ (2007) Nanoimprint lithography: methods and material requirements. Adv Mater 19:495

    Article  CAS  Google Scholar 

  21. Torres AJ, Wu M, Holowka D, Baird B (2008) Nanobiotechnology and cell biology: micro- and nanofabricated surfaces to investigate receptor-mediated signaling. Annu Rev Biophys 37:265–288. doi:10.1146/annurev.biophys.36.040306.132651

    Article  CAS  PubMed  Google Scholar 

  22. Groves JT, Ulman N, Boxer SG (1997) Micropatterning fluid lipid bilayers on solid supports. Science 275:651–653. doi:10.1126/science.275.5300.651

    Article  CAS  PubMed  Google Scholar 

  23. Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184

    Article  CAS  Google Scholar 

  24. Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373

    Article  CAS  PubMed  Google Scholar 

  25. Orth RN et al (2003) Creating biological membranes on the micron scale: forming patterned lipid bilayers using a polymer lift-off technique. Biophys J 85:3066–3073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kung LA, Kam L, Hovis JS, Boxer SG (2000) Patterning hybrid surfaces of proteins and supported lipid bilayers. Langmuir 16:6773–6776. doi:10.1021/la000653t

    Article  CAS  Google Scholar 

  27. Hovis JS, Boxer SG (2001) Patterning and composition arrays of supported lipid bilayers by microcontact printing. Langmuir 17:3400–3405. doi:10.1021/la0017577

    Article  CAS  Google Scholar 

  28. Kam L, Boxer SG (2001) Cell adhesion to protein‐micropatterned‐supported lipid bilayer membranes. J Biomed Mater Res 55:487–495

    Article  CAS  PubMed  Google Scholar 

  29. Groves JT, Boxer SG (2002) Micropattern formation in supported lipid membranes. Acc Chem Res 35:149–157. doi:10.1021/ar950039m

    Article  CAS  PubMed  Google Scholar 

  30. Weghuber J et al (2010) Temporal resolution of protein–protein interactions in the live-cell plasma membrane. Anal Bioanal Chem 397:3339–3347. doi:10.1007/s00216-010-3854-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bally M et al (2010) Liposome and lipid bilayer arrays towards biosensing applications. Small 6:2481–2497. doi:10.1002/smll.201000644

    Article  CAS  PubMed  Google Scholar 

  32. Dutta D, Kam LC (2013) Micropatterned, multicomponent supported lipid bilayers for cellular systems. Methods Cell Biol 120:53–67

    Article  Google Scholar 

  33. Costantino S, Heinze KG, Martínez OE, De Koninck P, Wiseman PW (2005) Two‐photon fluorescent microlithography for live‐cell imaging. Microsc Res Tech 68:272–276

    Article  PubMed  Google Scholar 

  34. Kunik D, Aramendia PF, Martínez OE (2009) Single photon fluorescent microlithography for live-cell imaging. Microsc Res Tech. doi:10.1002/jemt.20748

    Google Scholar 

  35. Sánchez MF, Dodes Traian MM, Levi V, Carrer DC (2015) One-photon lithography for high-quality lipid bilayer micropatterns. Langmuir 31:11943–11950

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dolores C. Carrer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sánchez, M.F., Carrer, D.C. (2016). Lipid Bilayer Patterns Fabrication by One-Photon Lithography. In: Shukla, A. (eds) Chemical and Synthetic Approaches in Membrane Biology. Springer Protocols Handbooks. Humana Press, New York, NY. https://doi.org/10.1007/8623_2016_6

Download citation

  • DOI: https://doi.org/10.1007/8623_2016_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6835-0

  • Online ISBN: 978-1-4939-6836-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics