Skip to main content

Protocol for the Application of Bioluminescence Full-Cell Bioreporters for Monitoring of Terrestrial Bioremediation

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 641 Accesses

Abstract

Microbial full-scale bioreporters are associated with a variety of names that include biosensors, bio-indicators and bio-reactive agents. The role of such microbial agents is to respond to the bioavailable fraction of a given analyte under “near environmental conditions”. Making use of appropriate assays with relevant and biologically compatible extraction procedures means that such techniques can be applied to develop site specific risk and hazard assessments, an appraisal of constraints inhibiting biodegradation and a prediction of potential for biodegradation. The effectiveness of an assay requires: (1) the comprehensive characterisation of the marker gene (the reporter gene) and the isolate, (2) the collection of an environmentally relevant sample in a suitable matrix and (3) a technique to integrate the bioreporters with the sample to generate focussed and relevant data. This technology is ideally placed for high throughput, rapid screening of samples from a range of environmental matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu TT, Close DM, Sayler GS, Ripp S (2013) Genetically modified whole-cell bioreporters for environmental assessment. Ecol Indic 28:125–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dawson JJC, Godsiffe EJ, Thompson IP, Ralebitso-Senior TK, Killham KS, Paton GI (2007) Application of biological indicators to assess recovery of hydrocarbon impacted soils. Soil Biol Biochem 39(1):164–177

    Article  CAS  Google Scholar 

  3. Bundy JG, Campbell CD, Paton GI (2001) Comparison of response of six different luminescent bacterial bioassays to bioremediation of five contrasting oils. J Environ Monit 3(4):404–410

    Article  CAS  PubMed  Google Scholar 

  4. Tiensing T, Strachan N, Paton GI (2002) Evaluation of interactive toxicity of chlorophenols in water and soil using lux-marked biosensors. J Environ Monit 4(4):482–489

    Article  CAS  PubMed  Google Scholar 

  5. Bhattacharyya J, Read D, Amos S, Dooley S, Killham K, Paton GI (2005) Biosensor-based diagnostics of contaminated groundwater: assessment and remediation strategy. Environ Pollut 134(3):485–492

    Article  CAS  PubMed  Google Scholar 

  6. Diplock EE, Mardlin DP, Killham KS, Paton GI (2009) Predicting bioremediation of hydrocarbons: laboratory to field scale. Environ Pollut 157(6):1831–1840

    Article  CAS  PubMed  Google Scholar 

  7. Patterson CJ, Semple KT, Paton GI (2004) Non-exhaustive extraction techniques (NEETs) for the prediction of naphthalene mineralisation in soil. FEMS Microbiol Lett 241(2):215–220

    Article  CAS  PubMed  Google Scholar 

  8. Doick KJ, Dew NM, Semple KT (2005) Linking catabolism to cyclodextrin extractability: determination of the microbial availability of PAHs in soil. Environ Sci Tech 39(22):8858–8864

    Article  CAS  Google Scholar 

  9. Paton GI, Reid BJ, Semple KT (2009) Application of a luminescence-based biosensor for assessing naphthalene biodegradation in soils from a manufactured gas plant. Environ Pollut 157(5):1643–1648

    Article  CAS  PubMed  Google Scholar 

  10. Dandie CE, Weber J, Aleer S, Adetutu EM, Ball AS, Juhasz AL (2010) Assessment of five bioaccessibility assays for predicting the efficacy of petroleum hydrocarbon biodegradation in aged contaminated soils. Chemosphere 81(9):1061–1068

    Article  CAS  PubMed  Google Scholar 

  11. Kilbane JJ II (1998) Extractability and subsequent biodegradation of PAHs from contaminated soil. Water Air Soil Pollut 104(3–4):285–304

    Article  CAS  Google Scholar 

  12. Puglisi E, Patterson CJ, Paton GI (2003) Non-exhaustive extraction techniques (NEETs) for bioavailability assessment of organic hydrophobic compounds in soils. J Agron 23(8):755–756

    Article  CAS  Google Scholar 

  13. Bernhardt C, Derz K, Kördel W, Terytze K (2013) Applicability of non-exhaustive extraction procedures with Tenax and HPCD. J Hazard Mater 261:711–717

    Article  CAS  PubMed  Google Scholar 

  14. Oleszczuk P (2009) Application of three methods used for the evaluation of polycyclic aromatic hydrocarbons (PAHs) bioaccessibility for sewage sludge composting. Bioresour Technol 100(1):413–420

    Article  CAS  PubMed  Google Scholar 

  15. Sinebe BS (2015) Application of microbial biosensors for groundwater and wastewater monitoring. PhD thesis, University of Aberdeen

    Google Scholar 

  16. Bundy JG, Maciel H, Cronin MTD, Paton GI (2003) Limitations of a cosolvent for ecotoxicity testing of hydrophobic compounds. Bull Environ Contam Toxicol 70(1):1–8

    Article  CAS  PubMed  Google Scholar 

  17. Dawson JJC, Iroegbu CO, Maciel H, Paton GI (2008) Application of luminescent biosensors for monitoring the degradation and toxicity of BTEX compounds in soils. J Appl Microbiol 104(1):141–151

    CAS  PubMed  Google Scholar 

  18. Sousa S, Duffy C, Weitz H, Glover LA, Bär E, Henkler R, Killham K (1998) Use of a lux-modified bacterial biosensor to identify constraints to bioremediation of btex-contaminated sites. Environ Toxicol Chem 17(6):1039–1045

    Article  CAS  Google Scholar 

  19. van der Meer JR, Belkin S (2010) Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Microbiol 8:511–522

    Article  PubMed  Google Scholar 

  20. Weitz HJ, Ritchie JM, Bailey DA, Horsburgh AM, Killham K, Glover LA (2001) Construction of a modified mini-Tn5 luxCDABE transposon for the development of bacterial biosensors for ecotoxicity testing. FEMS Microbiol Lett 197(2):159–165

    Article  CAS  PubMed  Google Scholar 

  21. Rattray EA, Prosser JI, Killham K, Glover LA (1990) Luminescence-based nonextractive technique for in situ detection of Escherichia coli in soil. Appl Environ Microbiol 56(11):3368–3374

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Leedjärv A, Ivask A, Virta M, Kahru A (2006) Analysis of bioavailable phenols from natural samples by recombinant luminescent bacterial sensors. Chemosphere 64(11):1910–1919

    Article  PubMed  Google Scholar 

  23. King JMH, Digrazia PM, Applegate B, Burlage R, Sanseverino J, Dunbar P, Larimer F, Sayler GS (1990) Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science 249(4970):778–781

    Article  CAS  PubMed  Google Scholar 

  24. Selifonova OV, Eaton RW (1996) Use of an ipb-lux fusion to study regulation of the isopropylbenzene catabolism operon of Pseudomonas putida RE204 and to detect hydrophobic pollutants in the environment. Appl Environ Microbiol 62(3):778–783

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Applegate BM, Kehrmeyer SR, Sayler GS (1998) A chromosomally based tod-luxCDABE whole-cell reporter for benzene, toluene, ethybenzene, and xylene (BTEX) sensing. Appl Environ Microbiol 64(7):2730–2735

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Grangemard I, Wallach J, Maget-Dana R, Peypoux F (2001) Lichenysin: A more efficient cation chelator than surfactin. Appl Biochem Biotechnol 90(3):199–210

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah B. Sinebe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Sinebe, S.B., Iroakasi, O.I., Paton, G.I. (2016). Protocol for the Application of Bioluminescence Full-Cell Bioreporters for Monitoring of Terrestrial Bioremediation. In: McGenity, T., Timmis, K., Nogales, B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2016_226

Download citation

  • DOI: https://doi.org/10.1007/8623_2016_226

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53113-6

  • Online ISBN: 978-3-662-53115-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics