Skip to main content

Genetic Strategies on Kennedy Pathway to Improve Triacylglycerol Production in Oleaginous Rhodococcus Strains

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 689 Accesses

Abstract

During the last years, microorganisms (yeasts, fungi, microalgae, and bacteria) have been receiving increasing attention as alternative lipid sources (also called single cell oils). Some lipid-accumulating bacteria, in particular those belonging to actinomycetes, are able to synthesize remarkably high amounts of triacylglycerides (TAGs) (up to 70% of the cellular dry weight) from simple carbon sources such as glucose, which are accumulated as intracellular lipid bodies. The applied potential of bacterial TAG may be similar to that of vegetable oil sources, such as additives for feed, cosmetics, oleochemicals, lubricants, and other manufactured products. In addition, bacterial oils have been recently considered as alternative sources for biofuel production. Because the development of an industrial and commercially significant process depends on the optimization of engineered cells and the technological procedures, several efforts to improve the natural accumulation of microbial lipids have been performed around the world. This chapter focuses on some genetic strategies for improving TAG accumulation in bacteria using oleaginous Rhodococcus strains as model. Particularly, protocols focus on the two last enzymatic steps of the Kennedy pathway by overexpression of ro00075 gene and 2 atf genes coding for a phosphatidic acid phosphatase type 2 (PAP2) and diacylglycerol acyltransferase (WS/DGAT) enzymes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvarez HM, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376

    Article  CAS  PubMed  Google Scholar 

  2. Alvarez HM, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusion by Rhodococcus opacus PD630. Arch Microbiol 165:377–386

    Article  CAS  PubMed  Google Scholar 

  3. Alvarez HM, Kalscheuer R, Steinbüchel A (1997) Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol. Fett-Lipid 99:239–246

    Article  CAS  Google Scholar 

  4. Barksdale L, Kim KS (1977) Mycobacterium. Bacteriol Rev 41:217–372

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Daniel J, Deb C, Dubey VS, Sirakova TD, Abomoelak B, Morbidoni HR, Kolattukudy PE (2004) Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture. J Bacteriol 186:5017–5030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Olukoshi ER, Packter NM (1994) Importance of stored triacylglycerols in Streptomyces: possible carbon source for antibiotics. Microbiology 140:931–943

    Article  CAS  PubMed  Google Scholar 

  7. Hernández MA, Mohn WW, Martínez E, Rost E, Alvarez AF, Alvarez HM (2008) Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism. BMC Genomics 12:600

    Article  Google Scholar 

  8. Alvarez HM (2010) Biotechnological production and significance of triacylglycerols and wax esters. In: Kenneth NT (ed) Microbiology of hydrocarbons, oils, lipids, and derived compounds. Springer, Heidelberg, pp 2995–3002

    Chapter  Google Scholar 

  9. Holder JW, Ulrich JC, DeBono AC, Godfrey PA, Desjardins CA, Zucker J, Zeng Q, Leach ALB, Ghiviriga I, Dancel C, Abeel T, Gevers D, Kodira CD, Desany B, Affourtit JP, Birren BW, Sinskey AJ (2011) Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development. PLoS Genet 7(9), e1002219. doi:10.1371/journal.pgen.1002219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alvarez AF, Alvarez HM, Kalscheuer R, Wältermann M, Steinbüchel A (2008) Cloning and characterization of a gene involved in triacylglycerol biosynthesis and identification of additional homologous genes in the oleaginous bacterium Rhodococcus opacus PD630. Microbiology 154:2327–2335

    Article  CAS  PubMed  Google Scholar 

  11. Hernández MA, Arabolaza A, Rodríguez E, Gramajo H, Alvarez HM (2013) The atf2 gene is involved in triacylglycerol biosynthesis and accumulation in the oleaginous Rhodococcus opacus PD630. Appl Microbiol Biotechnol 97:2119–2130

    Article  PubMed  Google Scholar 

  12. Hernández MA, Comba S, Arabolaza A, Gramajo H, Alvarez HM (2014) Overexpression of a phosphatidic acid phosphatase type 2 leads to an increase in triacylglycerol production in oleaginous Rhodococcus strains. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-6002-2

    PubMed  Google Scholar 

  13. Villalba MS, Alvarez HM (2014) Identification of a novel ATP-binding cassette transporter involved in long-chain fatty acid import and its role in triacylglycerol accumulation in Rhodococcus jostii RHA1. Microbiology 160:1523–1532

    Article  CAS  PubMed  Google Scholar 

  14. MacEachran DP, Prophete ME, Sinskey AJ (2010) The Rhodococcus opacus PD630 heparin-binding hemagglutinin homolog TadA mediates lipid body formation. Appl Environ Microbiol 76(21):7217–7225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ding Y, Yang L, Zhang S, Wang Y, Du Y, Pu J, Peng G, Chen Y, Zhang H, Yu J, Hang H, Wu P, Yang F, Yang H, Steinbüchel A, Liu P (2012) Identification of the major functional proteins of prokaryotic lipid droplets. J Lipid Res 53(3):399–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. MacEachran DP, Sinskey AJ (2013) The Rhodococcus opacus TadD protein mediates triacylglycerol metabolism by regulating intracellular NAD(P)H pools. Microb Cell Fact 12:104

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kalscheuer R, Arenskötter M, Steinbüchel A (1999) Establishment of a gene transfer system for Rhodococcus opacus PD630 based on electroporation and its application for recombinant biosynthesis of poly(3-hydroxyalkanoic acids). Appl Microbiol Biotechnol 52:508–515

    Article  CAS  PubMed  Google Scholar 

  18. Arenskoetter M, Baumeister D, Kalscheuer R, Steinbuechel A (2003) Identification and application of plasmids suitable for transfer of foreign DNA to members of the genus Gordonia. Appl Environ Microbiol 69:4971–4974

    Article  CAS  Google Scholar 

  19. Matsui T, Saeki H, Shinzato N, Matsuda H (2006) Characterization of Rhodococcus-E. coli shuttle vector pNC9501 constructed from the cryptic plasmid of a propene-degrading bacterium. Curr microbiol 52:445–448

    Article  CAS  PubMed  Google Scholar 

  20. Kostichka K, Tao L, Bramucci M, Tomb JF, Nagarajan V, Cheng Q (2003) A small cryptic plasmid from Rhodococcus erythropolis: characterization and utility for gene expression. Appl Microbiol Biotechnol 62(1):61–68

    Google Scholar 

  21. De Mot R, Nagy I, De Schrijver A, Pattanapipitpaisal P, Schoofs G, Vanderleyden J (1997) Structural analysis of the 6 kb cryptic plasmid pFAJ2600 from Rhodococcus erythropolis NI86/21 and construction of Escherichia coli-Rhodococcus shuttle vectors. Microbiology 143:3137–3147

    Article  PubMed  Google Scholar 

  22. Singer ME, Finnerty WR (1988) Construction of an Escherichia coli-Rhodococcus shuttle vector and plasmid transformation in Rhodococcus spp. J Bacteriol 170:638–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shao Z, Dick WA, Behki RM (1995) An improved Esherichia coliRhodococcus shuttle vector and plasmid transformation in Rhodococcus spp. using electropolation. Lett Appl Microbiol 21:261–266

    Article  CAS  PubMed  Google Scholar 

  24. Dabbs ER, Gowan B, Anderson SJ (1990) Nocardioform arsenic resistance plasmid and construction of Rhodococcus cloning vectors. Plasmid 23:242–247

    Article  CAS  PubMed  Google Scholar 

  25. Dabbs ER (1998) Cloning of genes that have environmental and clinical importance from rhodococci and related bacteria. Antonie van Leeuwenhoek 74:155–168

    Article  CAS  PubMed  Google Scholar 

  26. Zheng H, Tkachuk-Saad O, Prescott JF (1997) Development of a Rhodococcus equi-Escherichia coli plasmid shuttle vector. Plasmid 38(3):180–187

    Article  CAS  PubMed  Google Scholar 

  27. Lessard PA, O’Brien XM, Currie DH, Sinskey AJ (2004) pB264, a small, mobilizable, temperature sensitive plasmid from Rhodococcus. BMC Microbiol 4:15

    Article  PubMed  PubMed Central  Google Scholar 

  28. Veselý M, Pátek M, Nesvera J, Cejková A, Masák J, Jirků V (2003) Host-vector system for phenol-degrading Rhodococcus erythropolis based on Corynebacterium plasmids. Appl Microbiol Biotechnol 61:523–527

    Article  PubMed  Google Scholar 

  29. Rhee J, Cho J, Lee S, Park O (2006) Rhodococcus-E. coli vector. PCT WO2006/088307 A1 August 2006

    Google Scholar 

  30. Desomer J, Dhaese P, Montagu MV (1990) Transformation of Rhodococcus fascians by high-voltage electroporation and development of R. fascians cloning vectors. Appl Environ Microbiol 56(9):2818–2825

    Google Scholar 

  31. Masai E, Yamada A, Healy JM, Hatta T, Kimbara K, Fukuda M, Yano K (1995) Characterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. Appl Environ Microbiol 61:2079–2085

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Van der Geize R, Hessels GI, Van Gerwen R, Van der Meijden P, Dijkhuizen L (2002) Molecular and functional characterization of kshA and kshB, encoding two components of 3-ketosteroid 9 α-hydroxylase, a class IA monooxygenase, in Rhodococcus erythropolis strain SQ1. Mol Microbiol 45:1007–1018

    Article  PubMed  Google Scholar 

  33. Yang JC, Lessard PA, Sinskey AJ (2007) Characterization of the mobilization determinants of pAN12, a small replicon from Rhodococcus erythropolis AN12. Plasmid 57:71–81

    Article  CAS  PubMed  Google Scholar 

  34. Kurosawa K, Wewetzer SJ, Sinskey AJ (2013) Engineering xylose metabolism in triacylglycerol producing Rhodococcus opacus for lignocellulosic fuel production. Biotechnol Biofuels 6:134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Triccas JA, Parish T, Britton WJ, Giquel B (1998) An inducible expression system permitting the efficient purification of a recombinant antigen from Mycobacterium smegmatis. FEMS Microbiol Lett 167:151–156

    Article  CAS  PubMed  Google Scholar 

  36. Hänisch J, Wältermann M, Robenek H, Steinbüchel A (2006) The Ralstonia eutropha H16 phasin PhaP1 is targeted to intracellular triacylglycerol inclusions in Rhodococcus opacus PD630 and Mycobacterium smegmatis mc2155, and provides an anchor to target other proteins. Microbiology 152:3271–3280

    Article  PubMed  Google Scholar 

  37. Jackson M, Brigitte G (2003) Method of screening anti-mycobacterial molecules. US Patent 6,573,064 B1 Jun 2003

    Google Scholar 

  38. Nakashima N, Tamura T (2004) A novel system for expressing recombinant proteins over a wide temperature range from 4 to 35°C. Biotechnol Bioeng 86:136–148

    Article  CAS  PubMed  Google Scholar 

  39. Nakashima N, Tamura T (2004) Isolation and characterization of a rolling-circle-type plasmid from Rhodococcus erythropolis and application of the plasmid to multiple-recombinant-protein expression. Appl Environ Microbiol 70:5557–5568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mitani Y, Nakashima N, Sallam KI, Toriyabe T, Kondo K, Tamura T (2006) Advances in the development of genetic tools for the genus Rhodococcus. Actinomycetologica 20:55–61

    Article  CAS  Google Scholar 

  41. Pelicic V, Jackson M, Reyrat JM, Jacobs WR Jr, Gicquel B, Guilhot C (1997) Efficient allelic exchange and transposon mutagenesis in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 94:10955–10960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Margarit R (2001) Means and methods for the expression of homologous proteins in strains of Rhodococcus. European patent application EP1 127943 A2

    Google Scholar 

  43. Stover CK, De la Cruz VF, Fuerst TR, Burlein JE, Benson LA, Bennett LT, Bansal GP, Young JF, Lee MH, Hatfull GF, Snapper SB, Barletta RG, Jacobs WR Jr, Bloom BR (1991) New use of BCG for recombinant vaccines. Nature 351:456–460

    Article  CAS  PubMed  Google Scholar 

  44. Kong D, Kunimoto D (1995) Secretion of Human Interleukin 2 by Recombinant Mycobacterium bovis BCG. Infect Immun 63(3):799–803

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Salzman V, Mondino S, Sala C, Cole ST, Gago G, Gramajo H (2010) Transcriptional regulation of lipid homeostasis in mycobacteria. Mol Microbiol 78(1):64–77

    CAS  PubMed  Google Scholar 

  46. Hong Y, Hondalus MK (2008) Site-specific integration of StreptomycesΦC31 integrase-based vectors in the chromosome of Rhodococcus equi. FEMS Microbiol Lett 287:63–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dotson EM, Plikaytis B, Shinnick TM, Durvasula RV, Beard CB (2003) Transformation of Rhodococcus rhodnii, a symbiont of the Chagas disease vector Rhodnius prolixus, with integrative elements of the L1 mycobacteriophage. Infect Genet Evol 3(2):103–109

    Article  CAS  PubMed  Google Scholar 

  48. Voeykova T, Emelyanova L, Tabakov V, Mkrtumyan N (1998) Transfer of plasmid pTO1 from Escherichia coli to various representatives of the order Actinomycetales by intergeneric conjugation. FEMS Microbiol Lett 162:47–52

    Article  CAS  PubMed  Google Scholar 

  49. Voeykova T, Tabakov V, Ryabchenko L, Mkrtumyan N, Yanenko A (1994) Conjugative transfer of plasmid pTO1 from Escherichia coli to Rhodococcus spp. FEMS Microbiol Lett 16:555–560

    CAS  Google Scholar 

  50. Sallam KI, Tamura N, Tamura T (2007) A multipurpose transposon-based vector system mediates protein expression in Rhodococcus erythropolis. Gene 386:173–182

    Article  CAS  PubMed  Google Scholar 

  51. Sallam KI, Tamura N, Imoto N, Tamura T (2010) New vector system for random, single-step integration of multiple copies of DNA into the Rhodococcus genome. Appl Environ Microbiol 2531–2539

    Google Scholar 

  52. Zhang YM, Rock CO (2008) Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6:222–233

    Article  PubMed  Google Scholar 

  53. Parsons JB, Rock CO (2013) Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res 52(3):249–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Comba S, Menendez-Bravo S, Arabolaza A, Gramajo H (2013) Identification and physiological characterization of phosphatidic acid phosphatase enzymes involved in triacylglycerol biosynthesis in Streptomyces coelicolor. Microb Cell Fact 12:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Arabolaza A, Rodriguez E, Altabe S, Alvarez H, Gramajo H (2008) Multiple pathways for triacylglycerol biosynthesis in Streptomyces coelicolor. Appl Environ Microbiol 74:2573–2582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  PubMed  Google Scholar 

  57. Seto M, Kimbara K, Shimura M, Hatta T, Fukuda M, Yano K (1995) A novel transformation of polychlorinated biphenyls by Rhodococcus sp. strain RHA1. Appl Environ Microbiol 61(9):3353–3358

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Duncombe WG (1963) The colorimetric micro-determination of long chain fatty acids. Biochem J 88(1):7–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wawrik B, Harriman BH (2010) Rapid colorimetric quantification of lipid from algal cultures. J Microbiol Methods 80(3):262–266

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martín A. Hernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Hernández, M.A., Alvarez, H.M. (2015). Genetic Strategies on Kennedy Pathway to Improve Triacylglycerol Production in Oleaginous Rhodococcus Strains. In: McGenity, T., Timmis, K., Nogales, B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_134

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_134

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53113-6

  • Online ISBN: 978-3-662-53115-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics