Skip to main content

Assessment of Apoptosis and Neuronal Loss in Animal Models of HIV-1-Associated Neurocognitive Disorders

  • Protocol
  • First Online:
Transmission Electron Microscopy Methods for Understanding the Brain

Part of the book series: Neuromethods ((NM,volume 115))

  • 782 Accesses

Abstract

HIV-1-associated neurocognitive disorder (HAND) is a neurodegenerative disease resulting in various clinical manifestations, characterized by neuroinflammation, oxidative stress, and related events. Neuronal damage in HAND is felt to be mainly indirect: microglial cells infected by HIV-1 increase the production of cytokines and release HIV-1 proteins, the most likely neurotoxins, among which are the envelope proteins gp120 and gp41 and the nonstructural proteins Nef, Rev, Vpr, and Tat. We review and discuss here different methods used in the assessment of apoptosis and neuronal loss in different experimental, acute and chronic, models of HAND. We also briefly consider how these techniques help to evaluate the effects of gene delivery of antioxidant enzymes in animal models of HAND.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. McArthur JC, Hoover DR, Bacellar H et al (1993) Dementia in AIDS patients: incidence and risk factors. Multicenter AIDS Cohort Study. Neurology 43:2245–2252

    Article  CAS  PubMed  Google Scholar 

  2. Major EO, Rausch D, Marra C et al (2000) HIV-associated dementia. Science 288:440–442

    Article  CAS  PubMed  Google Scholar 

  3. Koutsilieri E, Sopper S, Scheller C et al (2002) Parkinsonism in HIV dementia. J Neural Transm 109:767–775

    Article  CAS  PubMed  Google Scholar 

  4. Antinori A, Arendt G, Becker JT et al (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69:1789–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Woods SP, Moore DJ, Weber E et al (2009) Cognitive neuropsychology of HIV-associated neurocognitive disorders. Neuropsychol Rev 19:152–168

    Article  PubMed  PubMed Central  Google Scholar 

  6. McArthur JC, Brew BJ, Nath A (2005) Neurological complications of HIV infection. Lancet Neurol 4:543–555

    Article  PubMed  Google Scholar 

  7. Nath A, Sacktor N (2006) Influence of highly active antiretroviral therapy on persistence of HIV in the central nervous system. Curr Opin Neurol 19:358–361

    Article  PubMed  Google Scholar 

  8. Ances BM, Ellis RJ (2007) Dementia and neurocognitive disorders due to HIV-1 infection. Semin Neurol 27:86–92

    Article  PubMed  Google Scholar 

  9. Mattson MP, Haughey NJ, Nath A (2005) Cell death in HIV dementia. Cell Death Differ 12:893–904

    Article  CAS  PubMed  Google Scholar 

  10. Rumbaugh JA, Nath A (2006) Developments in HIV neuropathogenesis. Curr Pharm Des 12:1023–1044

    Article  CAS  PubMed  Google Scholar 

  11. Gonzalez-Scarano F, Martin-Garcia J (2005) The neuropathogenesis of AIDS. Nat Rev Immunol 5:69–81

    Article  CAS  PubMed  Google Scholar 

  12. Kaul M, Garden GA, Lipton SA (2001) Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410:988–994

    Article  CAS  PubMed  Google Scholar 

  13. van de Bovenkamp M, Nottet HS, Pereira CF (2002) Interactions of human immunodeficiency virus-1 proteins with neurons: possible role in the development of human immunodeficiency virus-1 associated dementia. Eur J Clin Invest 32:619–627

    Article  PubMed  Google Scholar 

  14. Garden GA, Guo W, Jayadev S et al (2004) HIV associated neurodegeneration requires p53 in neurons and microglia. FASEB J 18:1141–1143

    CAS  PubMed  Google Scholar 

  15. Xu Y, Kulkosky J, Acheampong E et al (2004) HIV-1-mediated apoptosis of neuronal cells: proximal molecular mechanisms of HIV-1-induced encephalopathy. Proc Natl Acad Sci U S A 101:7070–7075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meucci O, Fatatis A, Simen AA et al (1998) Chemokines regulate hippocampal neuronal signalling and gp120 neurotoxicity. Proc Natl Acad Sci U S A 95:14500–14505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kaul M, Lipton SA (1999) Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis. Proc Natl Acad Sci U S A 96:8212–8216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eugenin EA, D’Aversa TG, Lopez L et al (2003) MCP-1 (CCL2) protects human neurons and astrocytes from NMDA or HIV-tat-induced apoptosis. J Neurochem 85:1299–1311

    Article  CAS  PubMed  Google Scholar 

  19. Ghezzi S, Noolan DM, Aluigi MG et al (2000) Inhibition of CXCR-3-dependent HIV-1 infection by extracellular HIV-1 Tat. Biochem Biophys Res Commun 270:992–996

    Article  CAS  PubMed  Google Scholar 

  20. Magnuson DS, Knudsen BE, Geiger JD et al (1995) Human immunodeficiency virus type 1 tat activates non-N-methyl-o-aspartate excitatory amino receptors and causes neurotoxicity. Ann Neurol 37:373–380

    Article  CAS  PubMed  Google Scholar 

  21. Bonavia R, Bajetto A, Barbero S et al (2001) HIV-1 Tat causes apoptosis death and calcium homeostasis alterations in rat neurons. Biochem Biophys Res Commun 288:301–308

    Article  CAS  PubMed  Google Scholar 

  22. Haughey NJ, Cutler RG, Tamara A et al (2004) Perturbation of sphingolipid metabolism and ceramide production in HIV-dementia. Ann Neurol 5:257–267

    Article  Google Scholar 

  23. Kruman LL, Nath A, Mattson MP (1998) HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Exp Neurol 154:276–288

    Article  CAS  PubMed  Google Scholar 

  24. Nath A, Haughey NJ, Jones M et al (2000) Synergistic neurotoxicity by human immunodeficiency virus proteins tat and gp120: protection by memantine. Ann Neurol 47:186–194

    Article  CAS  PubMed  Google Scholar 

  25. Hurtrel M, Ganiere JP, Guelfi JF et al (1992) Comparison of early and late feline immunodeficiency virus encephalopathies. AIDS 6:399–406

    Article  CAS  PubMed  Google Scholar 

  26. Thormar H (2005) Maedi-Visna virus and its relationship to human deficiency virus. AIDS Rev 7:233–245

    PubMed  Google Scholar 

  27. Lackner AA, Veazey RS (2007) Current concepts in AIDS pathogenesis: insights from the SIV/macaque model. Annu Rev Med 58:461–476

    Article  CAS  PubMed  Google Scholar 

  28. Toggas SM, Masliah E, Rockenstein EM et al (1994) Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice. Nature 367:188–193

    Article  CAS  PubMed  Google Scholar 

  29. Bruce-Keller AJ, Turchan-Cholewo J, Smart EJ et al (2008) Morphine causes rapid increases in glial activation and neuronal injury in the striatum of inducible HIV-1 Tat transgenic mice. Glia 56:1414–1427

    Article  PubMed  PubMed Central  Google Scholar 

  30. Agrawal L, Louboutin JP, Reyes BAS et al (2006) Antioxidant enzyme gene delivery to protect from HIV-1 gp120-induced neuronal apoptosis. Gene Ther 13:1645–1656

    Article  CAS  PubMed  Google Scholar 

  31. Louboutin JP, Reyes BAS, Agrawal L et al (2007) Strategies for CNS-directed gene delivery: in vivo gene transfer to the brain using SV40-derived vectors. Gene Ther 14:939–949

    Article  CAS  PubMed  Google Scholar 

  32. Louboutin JP, Agrawal L, Reyes BAS et al (2007) Protecting neurons from HIV-1 gp120-induced oxidant stress using both localized intracerebral and generalized intraventricular administration of antioxidant enzymes delivered by SV40-derived vectors. Gene Ther 14:1650–1661

    Article  CAS  PubMed  Google Scholar 

  33. Louboutin JP, Agrawal L, Reyes BAS et al (2012) Gene delivery of antioxidant enzymes inhibits HIV-1 gp120-induced expression of caspases. Neuroscience 214:68–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nosheny RL, Bachis A, Acquas E et al (2004) Human immunodeficiency virus type 1 glycoprotein gp120 reduces the levels of brain-derived neurotrophic factor in vivo: potential implication for neuronal cell death. Eur J Neurosci 20:2857–2864

    Article  PubMed  Google Scholar 

  35. Louboutin JP, Agrawal L, Reyes BAS et al (2009) HIV-1 gp120 neurotoxicity proximally and at a distance from the point of exposure: protection by rSV40 delivery of antioxidant enzymes. Neurobiol Dis 34:462–476

    Article  CAS  PubMed  Google Scholar 

  36. Louboutin JP, Agrawal L, Reyes BAS et al (2010) HIV-1 gp120-induced injury to the blood-brain barrier: role of metalloproteinases 2 and 9 and relationship to oxidative stress. J Neuropathol Exp Neurol 69:801–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Louboutin JP, Reyes BAS, Agrawal L et al (2010) Blood-brain barrier abnormalities caused by exposure to HIV-1 gp120 - protection by gene delivery of antioxidant enzymes. Neurobiol Dis 38:313–325

    Article  CAS  PubMed  Google Scholar 

  38. Louboutin JP, Reyes BAS, Agrawal L et al (2010) HIV-1 gp120-induced neuroinflammation: relationship to neuron loss and protection by rSV40-delivered antioxidant enzymes. Exp Neurol 221:231–245

    Article  CAS  PubMed  Google Scholar 

  39. Agrawal L, Louboutin JP, Marusich E et al (2010) Dopaminergic neurotoxicity of HIV-1 gp120: reactive oxygen species as signaling intermediates. Brain Res 1306:116–130

    Article  CAS  PubMed  Google Scholar 

  40. Louboutin JP, Reyes BAS, Agrawal L et al (2011) HIV-1 gp120 upregulates matrix metalloproteinases and their inhibitors in a rat model of HIV encephalopathy. Eur J Neurosci 34:2015–2020

    Article  PubMed  Google Scholar 

  41. Louboutin JP, Agrawal L, Reyes BAS et al (2009) A rat model of human immunodeficiency virus-1 encephalopathy using envelope glycoprotein gp120 expression delivered by SV40 vectors. J Neuropathol Exp Neurol 68:456–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Louboutin JP, Agrawal L, Reyes BAS et al (2014) Oxidative stress is associated with neuroinflammation in animal models of HIV-1 Tat neurotoxicity. Antioxidants 3:414–438

    Article  PubMed  PubMed Central  Google Scholar 

  43. Agrawal L, Louboutin JP, Reyes BAS et al (2012) HIV-1 Tat neurotoxicity: a model of acute and chronic exposure, and neuroprotection by gene delivery of antioxidant enzymes. Neurobiol Dis 45:657–670

    Article  CAS  PubMed  Google Scholar 

  44. Ikonomidou C, Bosch F, Miksa M et al (1999) Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 283:70–74

    Article  CAS  PubMed  Google Scholar 

  45. Ribe EM, Serrano-Saiz E, Akpan N et al (2008) Mechanisms of neuronal death in disease: defining the models and the players. Biochem J 415:165–182

    Article  CAS  PubMed  Google Scholar 

  46. Madden SD, Cotter TG (2008) Cell death in brain development and degeneration: control of caspase expression may be key! Mol Neurobiol 37:1–6

    Article  CAS  PubMed  Google Scholar 

  47. Sims NR, Muyderman H (2010) Mitochondria, oxidative metabolism and cell death in stroke. Biochim Biophys Acta 1802:80–91

    Article  CAS  PubMed  Google Scholar 

  48. Broughton BRS, Reutens DC, Sobey CG (2009) Apoptotic mechanisms after cerebral ischemia. Stroke 40:e331–e339

    Article  PubMed  Google Scholar 

  49. Rohn TT (2010) The role of caspases in Alzheimer’s disease: potential novel therapeutic opportunities. Apoptosis 15:1403–1409

    Article  CAS  PubMed  Google Scholar 

  50. Petito CK, Roberts B (1995) Evidence of apoptotic cell death in HIV encephalitis. Am J Pathol 146:1121–1130

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Fujikawa DG (2015) The role of excitotoxic programmed necrosis in acute brain injury. Comput Struct Biotechnol J 13:212–221

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bottone MG, Fanizzi FP, Bernocchi G (2015) In vivo and in vitro immunohistochemical visualization of neural cell apoptosis and autophagy. In: Merighi A, Lossi L (eds) Immunocytochemistry and related techniques, vol 101, Neuromethods. Springer Protocols. Springer Science + Business Media, Humana Press, New York, NY, pp 153–178

    Google Scholar 

  53. Agrawal L, Louboutin JP, Strayer DS (2007) Preventing HIV-1 Tat-induced neuronal apoptosis using antioxidant enzymes: mechanistic and therapeutic implications. Virology 363:462–472

    Article  CAS  PubMed  Google Scholar 

  54. Louboutin JP, Marusich E, Fisher-Perkins J et al (2011) Gene transfer to the Rhesus monkey brain using SV40-derived vectors is durable and safe. Gene Ther 18:682–691

    Article  CAS  PubMed  Google Scholar 

  55. Louboutin JP, Chekmasova AA, Marusich E et al (2010) Efficient CNS gene delivery by intravenous injection. Nat Methods 7:905–907

    Article  CAS  PubMed  Google Scholar 

  56. Louboutin JP, Reyes BAS, Agrawal L et al (2012) Intracisternal rSV40 administration provides effective pan-CNS transgene expression. Gene Ther 19:114–118

    Article  CAS  PubMed  Google Scholar 

  57. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic, New York, NY

    Google Scholar 

  58. Louboutin JP (2015) Immunocytochemical assessment of blood-brain barrier structure, function, and damage. In: Merighi A, Lossi L (eds) Immunocytochemistry and related techniques, vol 101, Neuromethods. Springer Protocols. Springer Science + Business Media, Humana Press, New York, NY, pp 225–253

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Louboutin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Louboutin, JP., Reyes, B., Agrawal, L., Van Bockstaele, E., Strayer, D.S. (2016). Assessment of Apoptosis and Neuronal Loss in Animal Models of HIV-1-Associated Neurocognitive Disorders. In: Van Bockstaele, E. (eds) Transmission Electron Microscopy Methods for Understanding the Brain. Neuromethods, vol 115. Humana Press, New York, NY. https://doi.org/10.1007/7657_2015_96

Download citation

  • DOI: https://doi.org/10.1007/7657_2015_96

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3638-0

  • Online ISBN: 978-1-4939-3640-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics