Skip to main content

Tumor Targeting by RGD-Grafted PLGA-Based Nanotheranostics Loaded with Paclitaxel and Superparamagnetic Iron Oxides

  • Protocol
  • First Online:
Integrin Targeting Systems for Tumor Diagnosis and Therapy

Abstract

Theranostic nanoparticles have the potential to revolutionize cancer diagnosis and therapy. Many groups have demonstrated differential levels of tumor growth between tumors treated by targeted or untargeted nanoparticles; however, only few have shown in vivo efficacy in both therapeutic and diagnostic approach. Herein, we first develop and characterize dual-paclitaxel (PTX)/superparamagnetic iron oxide (SPIO)-loaded PLGA-based nanoparticles grafted with the RGD peptide, for a theranostic purpose. Second, we compare in vivo different strategies in terms of targeting capabilities: (1) passive targeting via the EPR effect, (2) active targeting of αvβ3 integrin via RGD grafting, (3) magnetic guidance via a magnet placed on the tumor, and (4) the combination of the magnetic guidance and the active targeting of αvβ3 integrin. In this chapter, we present the general flowchart applied for this project: (1) the polymer and SPIO synthesis, (2) the physicochemical characterization of the nanoparticles, (3) the magnetic properties of the nanoparticles, and (4) the in vivo evaluation of the nanoparticles for their therapeutic and diagnosis purposes. We employ the electron spin resonance spectroscopy and magnetic resonance imaging to both quantify and visualize the accumulation of theranostic nanoparticles into the tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Janib SM, Moses AS, MacKay JA (2010) Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev 62:1052–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lammers T, Kiessling F, Hennink WE et al (2010) Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol Pharm 7:1899–1912

    Article  CAS  PubMed  Google Scholar 

  3. Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207

    Article  CAS  PubMed  Google Scholar 

  4. Danhier F, Feron O, Preat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148:135–146

    Article  CAS  PubMed  Google Scholar 

  5. Taurin S, Nehoff H, Greish K (2012) Anticancer nanomedicine and tumor vascular permeability; where is the missing link? J Control Release 164:265–275

    Article  CAS  PubMed  Google Scholar 

  6. Danhier F, Vroman B, Lecouturier N et al (2009) Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with paclitaxel. J Control Release 140:166–173

    Article  CAS  PubMed  Google Scholar 

  7. Danhier F, Le Breton A, Preat V (2012) RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm 9:2961–2973

    Article  CAS  PubMed  Google Scholar 

  8. Garanger E, Boturyn D, Coll JL et al (2006) Multivalent RGD synthetic peptides as potent alphaVbeta3 integrin ligands. Org Biomol Chem 4:1958–1965

    Article  CAS  PubMed  Google Scholar 

  9. Cole AJ, Yang VC, David AE (2011) Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends Biotechnol 29:323–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Radermacher KA, Beghein N, Boutry S et al (2009) In vivo detection of inflammation using pegylated iron oxide particles targeted at E-selectin: a multimodal approach using MR imaging and EPR spectroscopy. Invest Radiol 44:398–404

    Article  CAS  PubMed  Google Scholar 

  11. Radermacher KA, Magat J, Bouzin C et al (2012) Multimodal assessment of early tumor response to chemotherapy: comparison between diffusion-weighted MRI, 1H-MR spectroscopy of choline and USPIO particles targeted at cell death. NMR Biomed 25:514–522

    Article  CAS  PubMed  Google Scholar 

  12. Pourcelle V, Freichels H, Stoffelbach F et al (2009) Light induced functionalization of PCL-PEG block copolymers for the covalent immobilization of biomolecules. Biomacromolecules 10:966–974

    Article  CAS  PubMed  Google Scholar 

  13. Zweers ML, Engbers GH, Grijpma DW et al (2004) In vitro degradation of nanoparticles prepared from polymers based on DL-lactide, glycolide and poly(ethylene oxide). J Control Release 100:347–356

    Article  CAS  PubMed  Google Scholar 

  14. Schleich N, Sibret P, Danhier P et al (2013) Dual anticancer drug/superparamagnetic iron oxide-loaded PLGA-based nanoparticles for cancer therapy and magnetic resonance imaging. Int J Pharm 447:94–101

    Article  CAS  PubMed  Google Scholar 

  15. Pourcelle V, Devouge S, Garinot M et al (2007) PCL-PEG-based nanoparticles grafted with GRGDS peptide: preparation and surface analysis by XPS. Biomacromolecules 8:3977–3983

    Article  CAS  PubMed  Google Scholar 

  16. Danhier P, De Preter G, Boutry S et al (2012) Electron paramagnetic resonance as a sensitive tool to assess the iron oxide content in cells for MRI cell labeling studies. Contrast Media Mol Imaging 7:302–307

    Article  CAS  PubMed  Google Scholar 

  17. Laurent S, Bridot JL, Elst LV et al (2010) Magnetic iron oxide nanoparticles for biomedical applications. Future Med Chem 2:427–449

    Article  CAS  PubMed  Google Scholar 

  18. Yang HW, Hua MY, Liu HL et al (2012) An epirubicin-conjugated nanocarrier with MRI function to overcome lethal multidrug-resistant bladder cancer. Biomaterials 33:3919–3930

    Article  CAS  PubMed  Google Scholar 

  19. Lyons JA, Sheahan BJ, Galbraith SE et al (2007) Inhibition of angiogenesis by a Semliki Forest virus vector expressing VEGFR-2 reduces tumour growth and metastasis in mice. Gene Ther 14:503–513

    Article  CAS  PubMed  Google Scholar 

  20. Schleich N, Po C, Jacobs D et al (2014) Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. J Control Release 194:82–91

    Article  CAS  PubMed  Google Scholar 

  21. Danhier P, De Preter G, Magat J et al (2014) Multimodal cell tracking of a spontaneous metastasis model: comparison between MRI, electron paramagnetic resonance and bioluminescence. Contrast Media Mol Imaging 9:143–153

    Article  CAS  PubMed  Google Scholar 

  22. Danhier P, Magat J, Leveque P et al (2015) In vivo visualization and ex vivo quantification of murine breast cancer cells in the mouse brain using MRI cell tracking and electron paramagnetic resonance. NMR Biomed 28:367–375

    Article  CAS  PubMed  Google Scholar 

  23. Na HS, Lim YK, Jeong YI et al (2010) Combination antitumor effects of micelle-loaded anticancer drugs in a CT-26 murine colorectal carcinoma model. Int J Pharm 383:192–200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work is supported by grants from the Université catholique de Louvain (F.S.R.) and Fonds National de la Recherche Scientifique (F.R.S.-F.N.R.S.). F. Danhier is a Postdoctoral F.R.S.-F.N.R.S. Research Fellow. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Préat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Danhier, F. et al. (2015). Tumor Targeting by RGD-Grafted PLGA-Based Nanotheranostics Loaded with Paclitaxel and Superparamagnetic Iron Oxides. In: Patsenker, E. (eds) Integrin Targeting Systems for Tumor Diagnosis and Therapy. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/7653_2015_43

Download citation

  • DOI: https://doi.org/10.1007/7653_2015_43

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7443-6

  • Online ISBN: 978-1-4939-7445-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics