Skip to main content

Fabrication of cRGD-Conjugated Dual-Responsive Micelles to Target αvβ5 Integrin-Overexpressed Cancer

  • Protocol
  • First Online:
Integrin Targeting Systems for Tumor Diagnosis and Therapy

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 413 Accesses

Abstract

Decoration of nano-sized carriers with targeting ligands facilitates their cellular uptake in specific cells due to the ligand-receptor interaction and is being widely applied to fabricate nanoparticles for tumor-targeted therapy. In this chapter, we describe a strategy to covalently attach cyclo(Arg-Gly-Asp-D-Phe-Cys)(cRGD) peptide to a pH and redox potential dual-responsive micelle to realize tumor targeting. The micelle formation is based on the self-assembly of an amphiphilic polymer. The synthesis of the polymer and its post-modification including PEG-SH grafting and cRGD conjugation are comprehensively described. The fabrication of micelles and the investigation of its responsiveness to pH and redox potential are further introduced. Finally, the study of the targeting effect of cRGD micelles to αvβ5 integrin-overexpressed HCT 116 cells is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65:36–48

    Article  CAS  PubMed  Google Scholar 

  2. Remant BK, Chandrashekaran V, Cheng B, Chen H, Peña MM, Zhang J, Montgomery J, Xu P (2014) Redox potential ultrasensitive nanoparticle for the targeted delivery of camptothecin to HER2-positive cancer cells. Mol Pharm 11:1897–1905

    Article  PubMed  Google Scholar 

  3. Bahadur KCR, Xu P (2012) Multicompartment intracellular self-expanding nanogel for targeted delivery of drug cocktail. Adv Mater 24:6479–6483

    Article  CAS  Google Scholar 

  4. He H, Cattran AW, Nguyen T, Nieminen A-L, Xu P (2014) Triple-responsive expansile nanogel for tumor and mitochondria targeted photosensitizer delivery. Biomaterials 35:9546–9553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bunjes H (2010) Lipid nanoparticles for the delivery of poorly water-soluble drugs. J Pharm Pharmacol 62:1637–1645

    Article  CAS  PubMed  Google Scholar 

  6. Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53:283–318

    CAS  PubMed  Google Scholar 

  7. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760

    Article  CAS  PubMed  Google Scholar 

  8. Sun Q, Sun X, Ma X, Zhou Z, Jin E, Zhang B, Shen Y, Van Kirk EA, Murdoch WJ, Lott JR, Lodge TP, Radosz M, Zhao Y (2014) Integration of nanoassembly functions for an effective delivery cascade for cancer drugs. Adv Mater 26:7615–7621

    Article  CAS  PubMed  Google Scholar 

  9. Motornov M, Roiter Y, Tokarev I, Minko S (2010) Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog Polym Sci 35:174–211

    Article  CAS  Google Scholar 

  10. Cheng R, Meng F, Deng C, Klok H-A, Zhong Z (2013) Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 34:3647–3657

    Article  CAS  PubMed  Google Scholar 

  11. Zhuang J, Gordon MR, Ventura J, Li L, Thayumanavan S (2013) Multi-stimuli responsive macromolecules and their assemblies. Chem Soc Rev 42:7421–7435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25

    Article  CAS  PubMed  Google Scholar 

  13. Zwicke GL, Mansoori GA, Jeffery CJ (2012) Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev 3:1–11

    Article  Google Scholar 

  14. McGuire MJ, Gray BP, Li S, Cupka D, Byers LA, Wu L, Rezaie S, Liu Y-H, Pattisapu N, Issac J, Oyama T, Diao L, Heymach JV, Xie X-J, Minna JD, Brown KC (2014) Identification and characterization of a suite of tumor targeting peptides for non-small cell lung cancer. Sci Rep 4:1–11

    Google Scholar 

  15. Kocbek P, Obermajer N, Cegnar M, Kos J, Kristl J (2007) Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. J Control Release 120:18–26

    Article  CAS  PubMed  Google Scholar 

  16. Jinushi M, Chiba S, Baghdadi M, Kinoshita I, Dosaka-Akita H, Ito K, Yoshiyama H, Yagita H, Uede T, Takaoka A (2012) ATM-mediated DNA damage signals mediate immune escape through integrin-αvβ3–dependent mechanisms. Cancer Res 72:56–65

    Article  CAS  PubMed  Google Scholar 

  17. Oba M, Fukushima S, Kanayama N, Aoyagi K, Nishiyama N, Koyama H, Kataoka K (2007) Cyclic RGD peptide-conjugated polyplex micelles as a targetable gene delivery system directed to cells possessing αvβ3 and αvβ5 integrins. Bioconjug Chem 18:1415–1423

    Article  CAS  PubMed  Google Scholar 

  18. Miura Y, Takenaka T, Toh K, Wu S, Nishihara H, Kano MR, Ino Y, Nomoto T, Matsumoto Y, Koyama H, Cabral H, Nishiyama N, Kataoka K (2013) Cyclic RGD-linked polymeric micelles for targeted delivery of platinum anticancer drugs to glioblastoma through the blood–brain tumor barrier. ACS Nano 7:8583–8592

    Article  CAS  PubMed  Google Scholar 

  19. Arosio D, Manzoni L, Araldi EMV, Scolastico C (2011) Cyclic RGD functionalized gold nanoparticles for tumor targeting. Bioconjug Chem 22:664–672

    Article  CAS  PubMed  Google Scholar 

  20. RB KC, Thapa B, Xu P (2012) pH and redox dual responsive nanoparticle for nuclear targeted drug delivery. Mol Pharm 9:2719–2729

    Article  Google Scholar 

  21. Aied A, Zheng Y, Newland B, Wang W (2014) Beyond branching: multiknot structured polymer for gene delivery. Biomacromolecules 15:4520–4527

    Article  CAS  PubMed  Google Scholar 

  22. Dogan B, Catak S, Van Speybroeck V, Waroquier M, Aviyente V (2012) Free radical polymerization of ethyl methacrylate and ethyl α-hydroxy methacrylate: A computational approach to the propagation kinetics. Polymer 53:3211–3219

    Article  CAS  Google Scholar 

  23. Wang Y, Zhou K, Huang G, Hensley C, Huang X, Ma X, Zhao T, Sumer BD, DeBerardinis RJ, Gao J (2014) A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals. Nat Mater 13:204–212

    Article  CAS  PubMed  Google Scholar 

  24. Chen D, Liu W, Shen Y, Mu H, Zhang Y, Liang R, Wang A, Sun K, Fu F (2011) Effects of a novel pH-sensitive liposome with cleavable esterase-catalyzed and pH-responsive double smart mPEG lipid derivative on ABC phenomenon. Int J Nanomedicine 6:2053–2061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chuan X, Song Q, Lin J, Chen X, Zhang H, Dai W, He B, Wang X, Zhang Q (2014) Novel free-paclitaxel-loaded redox-responsive nanoparticles based on a disulfide-linked poly(ethylene glycol)–drug conjugate for intracellular drug delivery: synthesis, characterization, and antitumor activity in vitro and in vivo. Mol Pharm 11:3656–3670

    Article  CAS  PubMed  Google Scholar 

  26. Zheng Y, Ji S, Czerwinski A, Valenzuela F, Pennington M, Liu S (2014) FITC-conjugated cyclic RGD peptides as fluorescent probes for staining integrin αvβ3/αvβ5 in tumor tissues. Bioconjug Chem 25:1925–1941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by the ASPIRE award from the Office of the Vice President for Research of the University of South Carolina, and the Center for Targeted Therapeutics (1P20GM109091-01) from National Institutes of Health (NIH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peisheng Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

He, H., Bahadur K.C., R., Xu, P. (2015). Fabrication of cRGD-Conjugated Dual-Responsive Micelles to Target αvβ5 Integrin-Overexpressed Cancer. In: Patsenker, E. (eds) Integrin Targeting Systems for Tumor Diagnosis and Therapy. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/7653_2015_42

Download citation

  • DOI: https://doi.org/10.1007/7653_2015_42

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7443-6

  • Online ISBN: 978-1-4939-7445-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics