Skip to main content

In Vivo Genetic Alteration and Lineage Tracing of Single Stem Cells by Live Imaging

  • Protocol
  • First Online:
Skin Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1879))

Abstract

Studies characterizing stem cell lineages in different organs aim to understand which cells particular progenitors can give rise to and how this process is controlled. Because the skin contains several resident stem cell populations and undergoes constant turnover, it is an ideal tissue in which to study this phenomenon. Furthermore, with the advent of two-photon microscopy techniques in combination with genetic tools for cell labeling, this question can be studied non-invasively by using live imaging. In this chapter, we describe an experimental approach that takes this technique one step further. We combine the Cre and Tet inducible genetic systems for single clone labeling and genetic manipulation in a specific stem cell population in the skin by using known drivers. Our system involves the use of gain- and loss-of-function alleles activated only in a differentially labeled population to distinguish single clones. The same region within a tissue is imaged repeatedly to document the fate and interactions of single clones with and without genetic modifications in the long term. Implementing this lineage tracing approach while documenting changes in cell behavior brought about by the genetic alterations allows both aspects to be linked. Because of the inherent flexibility of the approach, we expect it to have broad applications in studying stem cell function not only in the skin, but also in other tissues amenable to live imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kretzschmar K, Watt FM (2012) Lineage tracing. Cell 148:33–45. https://doi.org/10.1016/j.cell.2012.01.002

    Article  CAS  PubMed  Google Scholar 

  2. Blanpain C, Simons BD (2013) Unravelling stem cell dynamics by lineage tracing. Nat Rev Mol Cell Biol 14:489–502. https://doi.org/10.1038/nrm3625

    Article  CAS  PubMed  Google Scholar 

  3. Blanpain C, Fuchs E (2009) Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10:207–217. https://doi.org/10.1038/nrm2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hsu Y-C, Li L, Fuchs E (2014) Emerging interactions between skin stem cells and their niches. Nat Med 20:847–856. https://doi.org/10.1038/nm.3643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alcolea MP, Jones PH (2014) Lineage analysis of epidermal stem cells. Cold Spring Harb Perspect Med 4:a015206. https://doi.org/10.1101/cshperspect.a015206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gawad C, Koh W, Quake SR (2016) Single-cell genome sequencing: current state of the science. Nat Rev Genet 17:175–188. https://doi.org/10.1038/nrg.2015.16

    Article  CAS  PubMed  Google Scholar 

  7. Crosetto N, Bienko M, van Oudenaarden A (2015) Spatially resolved transcriptomics and beyond. Nat Rev Genet 16:57–66. https://doi.org/10.1038/nrg3832

    Article  CAS  PubMed  Google Scholar 

  8. Rompolas P, Mesa KR, Greco V (2013) Spatial organization within a niche as a determinant of stem-cell fate. Nature 502:513–518. https://doi.org/10.1038/nature12602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rompolas P, Mesa KR, Kawaguchi K, Park S, Gonzalez D, Brown S, Boucher J, Klein AM, Greco V (2016) Spatiotemporal coordination of stem cell commitment during epidermal homeostasis. Science 352:1471–1474. https://doi.org/10.1126/science.aaf7012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pineda CM, Park S, Mesa KR, Wolfel M, Gonzalez DG, Haberman AM, Rompolas P, Greco V (2015) Intravital imaging of hair follicle regeneration in the mouse. Nat Protoc 10:1116–1130. https://doi.org/10.1038/nprot.2015.070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang S, Rompolas P (2017) Two-photon microscopy for intracutaneous imaging of stem cell activity in mice. Exp Dermatol 26:379–383. https://doi.org/10.1111/exd.13221

    Article  PubMed  Google Scholar 

  12. Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci U S A 85:5166–5170

    Article  CAS  Google Scholar 

  13. Metzger D, Clifford J, Chiba H, Chambon P (1995) Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci U S A 92:6991–6995

    Article  CAS  Google Scholar 

  14. Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89:5547–5551

    Article  CAS  Google Scholar 

  15. Gossen M, Freundlieb S, Bender G, Müller G, Hillen W, Bujard H (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766–1769

    Article  CAS  Google Scholar 

  16. Pan W, Jin Y, Stanger B, Kiernan AE (2010) Notch signaling is required for the generation of hair cells and supporting cells in the mammalian inner ear. Proc Natl Acad Sci 107:15798–15803. https://doi.org/10.1073/pnas.1003089107

    Article  PubMed  Google Scholar 

  17. Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JR, Zhou D, Kreger BT, Vasioukhin V, Avruch J, Brummelkamp TR, Camargo FD (2011) Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell 144:782–795. https://doi.org/10.1016/j.cell.2011.02.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grachtchouk M, Pero J, Yang SH, Ermilov AN, Michael LE, Wang A, Wilbert D, Patel RM, Ferris J, Diener J, Allen M, Lim S, Syu L-J, Verhaegen M, Dlugosz AA (2011) Basal cell carcinomas in mice arise from hair follicle stem cells and multiple epithelial progenitor populations. J Clin Invest 121:1768–1781. https://doi.org/10.1172/JCI46307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang L, Sharma K, Deng H-X, Siddique T, Grisotti G, Liu E, Roos RP (2008) Restricted expression of mutant SOD1 in spinal motor neurons and interneurons induces motor neuron pathology. Neurobiol Dis 29:400–408. https://doi.org/10.1016/j.nbd.2007.10.004

    Article  CAS  PubMed  Google Scholar 

  20. Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L (2007) A global double-fluorescent Cre reporter mouse. Genesis 45:593–605. https://doi.org/10.1002/dvg.20335

    Article  CAS  PubMed  Google Scholar 

  21. Tumbar T (2004) Defining the epithelial stem cell niche in skin. Science 303:359–363. https://doi.org/10.1126/science.1092436

    Article  CAS  PubMed  Google Scholar 

  22. Vasioukhin V, Degenstein L, Wise B, Fuchs E (1999) The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc Natl Acad Sci U S A 96:8551–8556

    Article  CAS  Google Scholar 

  23. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007. https://doi.org/10.1038/nature06196

    Article  CAS  Google Scholar 

  24. Snippert HJ, Haegebarth A, Kasper M, Jaks V, van Es JH, Barker N, van de Wetering M, van den Born M, Begthel H, Vries RG, Stange DE, Toftgård R, Clevers H (2010) Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327:1385–1389. https://doi.org/10.1126/science.1184733

    Article  CAS  Google Scholar 

  25. Günschmann C, Chiticariu E, Garg B, Hiz MM, Mostmans Y, Wehner M, Scharfenberger L (2014) Transgenic mouse technology in skin biology: inducible gene knockout in mice. J Investig Dermatol 134:1–4. https://doi.org/10.1038/jid.2014.213

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panteleimon Rompolas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Farrelly, O., Kuri, P., Rompolas, P. (2018). In Vivo Genetic Alteration and Lineage Tracing of Single Stem Cells by Live Imaging. In: Turksen, K. (eds) Skin Stem Cells. Methods in Molecular Biology, vol 1879. Humana Press, New York, NY. https://doi.org/10.1007/7651_2018_172

Download citation

  • DOI: https://doi.org/10.1007/7651_2018_172

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8869-3

  • Online ISBN: 978-1-4939-8870-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics