Skip to main content

Detection of C-Peptide in Urine as a Measure of Ongoing Beta Cell Function

  • Protocol
  • First Online:
Type-1 Diabetes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1433))

Abstract

C-peptide is a protein secreted by the pancreatic beta cells in equimolar quantities with insulin, following the cleavage of proinsulin into insulin. Measurement of C-peptide is used as a surrogate marker of endogenous insulin secretory capacity. Assessing C-peptide levels can be useful in classifying the subtype of diabetes as well as assessing potential treatment choices in the management of diabetes.

Standard measures of C-peptide involve blood samples collected either fasted or, most often, after a fixed stimulus (such as oral glucose, mixed meal, or IV glucagon). Despite the established clinical utility of blood C-peptide measurement, its widespread use is limited. In many instances this is due to perceived practical restrictions associated with sample collection.

Urine C-peptide measurement is an attractive noninvasive alternative to blood measures of beta-cell function. Urine C-peptide creatinine ratio measured in a single post stimulated sample has been shown to be a robust, reproducible measure of endogenous C-peptide which is stable for three days at room temperature when collected in boric acid. Modern high sensitivity immunoassay technologies have facilitated measurement of C-peptide down to single picomolar concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clark PM (1999) Assays for insulin, proinsulin(s) and C-peptide. Ann Clin Biochem 36(Pt 5):541–564

    Article  CAS  PubMed  Google Scholar 

  2. Horwitz DL, Rubenstein AH, Katz AI (1977) Quantitation of human pancreatic beta-cell function by immunoassay of C-peptide in urine. Diabetes 26:30–35

    Article  CAS  PubMed  Google Scholar 

  3. Matthews DR, Rudenski AS, Burnett MA, Darling P, Turner RC (1985) The half-life of endogenous insulin and C-peptide in man assessed by somatostatin suppression. Clin Endocrinol 23:71–79

    Article  CAS  Google Scholar 

  4. Duckworth WC, Bennett RG, Hamel FG (1998) Insulin degradation: progress and potential. Endocr Rev 19:608–624

    CAS  PubMed  Google Scholar 

  5. Hattersley A, Bruining J, Shield J, Njolstad P, Donaghue K (2006) ISPAD clinical practice consensus guidelines 2006–2007. The diagnosis and management of monogenic diabetes in children. Pediatr Diabetes 7:352–360

    Article  PubMed  Google Scholar 

  6. Koskinen P, Viikari J, Irjala K, Kaihola HL, Seppala P (1986) Plasma and urinary C-peptide in the classification of adult diabetics. Scand J Clin Lab Invest 46:655–663

    Article  CAS  PubMed  Google Scholar 

  7. Gjessing HJ, Matzen LE, Faber OK, Froland A (1989) Fasting plasma C-peptide, glucagon stimulated plasma C-peptide, and urinary C-peptide in relation to clinical type of diabetes. Diabetologia 32:305–311

    Article  CAS  PubMed  Google Scholar 

  8. Berger B, Stenstrom G, Sundkvist G (2000) Random C-peptide in the classification of diabetes. Scand J Clin Lab Invest 60:687–693

    Article  CAS  PubMed  Google Scholar 

  9. Service FJ, Rizza RA, Zimmerman BR, Dyck PJ, O Brien PC, 3rd Melton LJ (1997) The classification of diabetes by clinical and C-peptide criteria. A prospective population-based study. Diabetes Care 20:198–201

    Article  CAS  PubMed  Google Scholar 

  10. Palmer JP, Fleming GA, Greenbaum CJ et al (2004) C-peptide is the appropriate outcome measure for type 1 diabetes clinical trials to preserve beta-cell function: report of an ADA workshop, 21-22 October 2001. Diabetes 53:250–264

    Article  CAS  PubMed  Google Scholar 

  11. Byrne MM, Sturis J, Fajans SS et al (1995) Altered insulin secretory responses to glucose in subjects with a mutation in the MODY1 gene on chromosome 20. Diabetes 44:699–704

    Article  CAS  PubMed  Google Scholar 

  12. Hattersley A, Bruining J, Shield J, Njolstad P, Donaghue KC (2009) The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes 10(Suppl 12):33–42

    Article  PubMed  Google Scholar 

  13. Ellard S, Bellanne-Chantelot C, Hattersley AT (2008) Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young. Diabetologia 51:546–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Besser RE, Shepherd MH, McDonald TJ et al (2011) Urinary C-peptide creatinine ratio is a practical outpatient tool for identifying hepatocyte nuclear factor 1-{alpha}/hepatocyte nuclear factor 4-{alpha} maturity-onset diabetes of the young from long-duration type 1 diabetes. Diabetes Care 34:286–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Besser RE, Shields BM, Hammersley SE et al (2013) Home urine C-peptide creatinine ratio (UCPCR) testing can identify type 2 and MODY in pediatric diabetes. Pediatr Diabetes 14:181–188

    CAS  PubMed  Google Scholar 

  16. Bolner A, Lomeo L, Lomeo AM (2005) “Method-specific” stability of serum C-peptide in a multicenter clinical study. Clin Lab 51:153–155

    CAS  PubMed  Google Scholar 

  17. Greenbaum CJ, Mandrup-Poulsen T, McGee PF et al (2008) Mixed-meal tolerance test versus glucagon stimulation test for the assessment of beta-cell function in therapeutic trials in type 1 diabetes. Diabetes Care 31:1966–1971

    Article  PubMed  PubMed Central  Google Scholar 

  18. Assayfinder. Accessed 28 Jul 2011 from www.assayfinder.com

  19. McDonald TJ, Perry MH, Peake RW et al (2012) EDTA improves stability of whole blood C-peptide and insulin to over 24 hours at room temperature. PLoS One 7:e42084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gjessing HJ, Matzen LE, Froland A, Faber OK (1987) Correlations between fasting plasma C-peptide, glucagon-stimulated plasma C-peptide, and urinary C-peptide in insulin-treated diabetics. Diabetes Care 10:487–490

    Article  CAS  PubMed  Google Scholar 

  21. Huttunen NP, Knip M, Kaar ML, Puukka R, Akerblom HK (1989) Clinical significance of urinary C-peptide excretion in children with insulin-dependent diabetes mellitus. Acta Paediatr Scand 78:271–277

    Article  CAS  PubMed  Google Scholar 

  22. Meistas MT, Zadik Z, Margolis S, Kowarski AA (1981) Correlation of urinary excretion of C-peptide with the integrated concentration and secretion rate of insulin. Diabetes 30:639–643

    Article  CAS  PubMed  Google Scholar 

  23. Aoki Y (1991) Variation of endogenous insulin secretion in association with treatment status: assessment by serum C-peptide and modified urinary C-peptide. Diabetes Res Clin Pract 14:165–173

    Article  CAS  PubMed  Google Scholar 

  24. Cote AM, Firoz T, Mattman A, Lam EM, von Dadelszen P, Magee LA (2008) The 24-hour urine collection: gold standard or historical practice? Am J Obstet Gynecol 199(625):e621–e626

    Google Scholar 

  25. Hoogwerf BJ, Barbosa JJ, Bantle JP, Laine D, Goetz FC (1983) Urinary C-peptide as a measure of beta-cell function after a mixed meal in healthy subjects: comparison of four-hour urine C-peptide with serum insulin and plasma C-peptide. Diabetes Care 6:488–492

    Article  CAS  PubMed  Google Scholar 

  26. McDonald TJ, Knight BA, Shields BM, Bowman P, Salzmann MB, Hattersley AT (2009) Stability and reproducibility of a single-sample urinary C-peptide/creatinine ratio and its correlation with 24-h urinary C-peptide. Clin Chem 55:2035–2039

    Article  CAS  PubMed  Google Scholar 

  27. Oram RA, Rawlingson A, Shields BM et al (2013) Urine C-peptide creatinine ratio can be used to assess insulin resistance and insulin production in people without diabetes: an observational study. BMJ Open 3:e003193

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jones AG, Besser RE, McDonald TJ et al (2011) Urine C-peptide creatinine ratio is an alternative to stimulated serum C-peptide measurement in late-onset, insulin-treated diabetes. Diabet Med 28:1034–1038

    Article  CAS  PubMed  Google Scholar 

  29. Bowman P, McDonald TJ, Shields BM, Knight BA, Hattersley AT (2012) Validation of a single-sample urinary C-peptide creatinine ratio as a reproducible alternative to serum C-peptide in patients with Type 2 diabetes. Diabet Med 29:90–93

    Article  CAS  PubMed  Google Scholar 

  30. Besser RE (2013) Determination of C-peptide in children: when is it useful? Pediatr Endocrinol Rev 10:494–502

    PubMed  Google Scholar 

  31. Besser RE, Ludvigsson J, Jones AG et al (2011) Urine C-peptide creatinine ratio is a noninvasive alternative to the mixed-meal tolerance test in children and adults with type 1 diabetes. Diabetes Care 34:607–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Besser RE, Shields BM, Casas R, Hattersley AT, Ludvigsson J (2013) Lessons from the mixed-meal tolerance test: use of 90-minute and fasting C-peptide in pediatric diabetes. Diabetes Care 36:195–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hope SV, Jones AG, Goodchild E et al (2013) Urinary C-peptide creatinine ratio detects absolute insulin deficiency in Type 2 diabetes. Diabet Med 30:1342–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Thomas NJ, Shields BM, Besser RE et al (2012) The impact of gender on urine C-peptide creatinine ratio interpretation. Ann Clin Biochem 49:363–368

    Article  CAS  PubMed  Google Scholar 

  35. Ashby JP, Frier BM (1981) Circulating C peptide: measurement and clinical application. Ann Clin Biochem 18:125–130

    Article  CAS  PubMed  Google Scholar 

  36. Koskinen P (1988) Nontransferability of C-peptide measurements with various commercial radioimmunoassay reagents. Clin Chem 34:1575–1578

    CAS  PubMed  Google Scholar 

  37. Bristow AF, Das RE (1988) WHO international reference reagents for human proinsulin and human insulin C-peptide. J Biol Stand 16:179–186

    Article  CAS  PubMed  Google Scholar 

  38. Bartels H, Bohmer M, Heierli C (1972) Serum creatinine determination without protein precipitation. Clin Chim Acta 37:193–197

    Article  CAS  PubMed  Google Scholar 

  39. Wiedmeyer HM, Polonsky KS, Myers GL et al (2007) International comparison of C-peptide measurements. Clin Chem 53:784–787

    Article  CAS  PubMed  Google Scholar 

  40. Little RR, Rohlfing CL, Tennill AL et al (2008) Standardization of C-peptide measurements. Clin Chem 54:1023–1026

    Article  CAS  PubMed  Google Scholar 

  41. Marcovina S, Bowsher RR, Miller WG et al (2007) Standardization of insulin immunoassays: report of the American Diabetes Association Workgroup. Clin Chem 53:711–716

    Article  CAS  PubMed  Google Scholar 

  42. Miller WG, Thienpont LM, Van Uytfanghe K et al (2009) Toward standardization of insulin immunoassays. Clin Chem 55:1011–1018

    Article  CAS  PubMed  Google Scholar 

  43. Vauhkonen IK, Niskanen LK, Mykkanen L, Haffner SM, Uusitupa MI, Laakso M (2000) Hyperproinsulinemia is not a characteristic feature in the offspring of patients with different phenotypes of type II diabetes. Eur J Endocrinol 143:251–260

    Article  CAS  PubMed  Google Scholar 

  44. Constan L, Mako M, Juhn D, Rubenstein AH (1975) The excretion of proinsulin and insulin in urine. Diabetologia 11:119–123

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Tim McDonald is a National Institute of Health Research CSO funded scientist. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, or the Department of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. McDonald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

McDonald, T.J., Perry, M.H. (2016). Detection of C-Peptide in Urine as a Measure of Ongoing Beta Cell Function. In: Gillespie, K. (eds) Type-1 Diabetes. Methods in Molecular Biology, vol 1433. Humana Press, New York, NY. https://doi.org/10.1007/7651_2016_330

Download citation

  • DOI: https://doi.org/10.1007/7651_2016_330

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3641-0

  • Online ISBN: 978-1-4939-3643-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics