Skip to main content

Analysis of microRNA Microarrays in Cardiogenesis

  • Protocol
  • First Online:
Microarray Data Analysis

Abstract

microRNAs are a subclass of noncoding RNAs which have been demonstrated to play pivotal roles in multiple cellular mechanisms. microRNAs are small RNA molecules of 22–24 nt in length capable of modulating protein translation and/or RNA stability by base-priming with complementary sequences of the mRNAs, normally at the 3′untranslated region. To date, over 2,000 microRNAs have been already identified in humans, and orthologous microRNAs have been also identified in distinct animals and plants ranging a wide vast of species. High-throughput analyses by microarrays have become a gold standard to analyze the changes on microRNA expression in normal and pathological cellular or tissue conditions. In this chapter, we provide insights into the usage of this uprising technology in the context of cardiac development and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kelly RG, Buckingham ME (2002) The anterior heart-forming field: voyage to the arterial pole of the heart. Trends Genet 18:210–216

    Article  CAS  PubMed  Google Scholar 

  2. Moorman AF, Christoffels VM, Anderson RH, van den Hoff MJ (2007) The heart-forming fields: one or multiple? Philos Trans R Soc Lond B Biol Sci 362:1257–1265

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kelly RG (2012) The second heart field. Curr Top Dev Biol 100:33–65

    Article  CAS  PubMed  Google Scholar 

  4. López-Sánchez C, García-Martínez V (2011) Molecular determinants of cardiac specification. Cardiovasc Res 91:185–195

    Article  PubMed  Google Scholar 

  5. de Castro Mdel P, Acosta L, Domínguez JN, Aránega A, Franco D (2003) Molecular diversity of the developing and adult myocardium: implications for tissue targeting. Curr Drug Targets Cardiovasc Haematol Disord 3:227–239

    Article  PubMed  Google Scholar 

  6. Campione M, Ros MA, Icardo JM, Piedra E, Christoffels VM, Schweickert A, Blum M, Franco D, Moorman AF (2001) Pitx2 expression defines a left cardiac lineage of cells: evidence for atrial and ventricular molecular isomerism in the iv/iv mice. Dev Biol 231(1):252–264

    Article  CAS  PubMed  Google Scholar 

  7. Franco D, Campione M, Kelly R, Zammit PS, Buckingham M, Lamers WH, Moorman AF (2000) Multiple transcriptional domains, with distinct left and right components, in the atrial chambers of the developing heart. Circ Res 87(11):984–991

    Article  CAS  PubMed  Google Scholar 

  8. Franco D, Lamers WH, Moorman AF (1998) Patterns of expression in the developing myocardium: towards a morphologically integrated transcriptional model. Cardiovasc Res 38:25–53

    Article  CAS  PubMed  Google Scholar 

  9. Chinchilla A, Franco D (2006) Regulatory mechanisms of cardiac development and repair. Cardiovasc Hematol Disord Drug Targets 6:101–112

    Article  CAS  PubMed  Google Scholar 

  10. Franco D, Chinchilla A, Aránega AE (2012) Transgenic insights linking pitx2 and atrial arrhythmias. Front Physiol 3:206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ, Srivastava D (2007) Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129:303–317

    Article  CAS  PubMed  Google Scholar 

  12. Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, Ivey KN, Bruneau BG, Stainier DY, Srivastava D (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15:272–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Espinoza-Lewis RA, Wang DZ (2012) MicroRNAs in heart development. Curr Top Dev Biol 100:279–317

    Article  CAS  PubMed  Google Scholar 

  14. Bonet F, Hernandez-Torres F, Esteban FJ, Aranega A, Franco D (2013) Comparative analyses of microRNA microarrays during cardiogenesis: functional perspectives. Microarrays 2:81–96. doi:10.3390/microarrays2020081

    Article  CAS  Google Scholar 

  15. Bonet F, Hernandez-Torres F, Franco D (2014) Towards the therapeutic usage of microRNAs in cardiac disease and regeneration. Exp Clin Cardiol 20:720–756

    Google Scholar 

  16. Callari M, Dugo M, Musella V, Marchesi E, Chiorino G, Grand MM, Pierotti MA, Daidone MG, Canevari S, De Cecco L (2012) Comparison of microarray platforms for measuring differential microRNA expression in paired normal/cancer colon tissues. PLoS One 7(9):e45105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meyer SU, Pfaffl MW, Ulbrich SE (2010) Normalization strategies for microRNA profiling experiments: a “normal” way to a hidden layer of complexity? Biotechnol Lett 32(12):1777–1788

    Article  CAS  PubMed  Google Scholar 

  18. Der SD, Zhou A, Williams BR, Silverman RH (1998) Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc Natl Acad Sci U S A 95:15623–15628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eisen M, Brown P (1999) DNA arrays for analysis of gene expression. Meth Enzymol 303:179–205

    Google Scholar 

  20. Winzeler EA, Schena M, Davis RW (1999) Fluorescence-based expression monitoring using microarrays. Meth Enzymol 306:3–18

    Article  CAS  PubMed  Google Scholar 

  21. Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Google Scholar 

  22. Cheng Y, Ji R, Yue J, Yang J, Liu X, Chen H, Dean DB, Zhang C (2007) MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? Am J Pathol 170(6):1831–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang Y, Weng T, Gou D, Chen Z, Chintagari NR, Liu L (2007) Identification of rat lung-specific microRNAs by microRNA microarray: valuable discoveries for the facilitation of lung research. BMC Genomics 8:29

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang J, Xu R, Lin F, Zhang S, Zhang G, Hu S, Zheng Z (2009) MicroRNA: novel regulators involved in the remodeling and reverse remodeling of the heart. Cardiology 113(2):81–88

    Article  CAS  PubMed  Google Scholar 

  25. Matkovich SJ, Van Booven DJ, Youker KA, Torre-Amione G, Diwan A, Eschenbacher WH, Dorn LE, Watson MA, Margulies KB, Dorn GW 2nd (2009) Reciprocal regulation of myocardial microRNAs and messenger RNA in human cardiomyopathy and reversal of the microRNA signature by biomechanical support. Circulation 119(9):1263–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Naga Prasad SV, Duan ZH, Gupta MK, Surampudi VS, Volinia S, Calin GA, Liu CG, Kotwal A, Moravec CS, Starling RC, Perez DM, Sen S, Wu Q, Plow EF, Croce CM, Karnik S (2009) Unique microRNA profile in end-stage heart failure indicates alterations in specific cardiovascular signaling networks. J Biol Chem 284(40):27487–27499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chinchilla A, Lozano E, Daimi H, Esteban FJ, Crist C, Aranega AE, Franco D (2011) MicroRNA profiling during mouse ventricular maturation: a role for miR-27 modulating Mef2c expression. Cardiovasc Res 89(1):98–108

    Article  CAS  PubMed  Google Scholar 

  28. Condorelli G, Latronico MV (2014) Cavarretta E. microRNAs in cardiovascular diseases: current knowledge and the road ahead. J Am Coll Cardiol 63(21):2177–2187

    Article  CAS  PubMed  Google Scholar 

  29. Vasudevan S (2012) Posttranscriptional upregulation by microRNAs. Wiley Interdiscip Rev RNA 3(3):311–330

    Article  CAS  PubMed  Google Scholar 

  30. Steitz JA, Vasudevan S (2009) miRNPs: versatile regulators of gene expression in vertebrate cells. Biochem Soc Trans 37(Pt 5):931–935

    Article  CAS  PubMed  Google Scholar 

  31. Letonqueze O, Lee J, Vasudevan S (2012) MicroRNA-mediated posttranscriptional mechanisms of gene expression in proliferating and quiescent cancer cells. RNA Biol 9(6):871–880

    Article  CAS  PubMed  Google Scholar 

  32. Lee S, Vasudevan S (2013) Post-transcriptional stimulation of gene expression by microRNAs. Adv Exp Med Biol 768:97–126

    Article  CAS  PubMed  Google Scholar 

  33. Papadopoulos GL, Reczko M, Simossis VA, Sethupathy P, Hatzigeorgiou AG (2009) The database of experimentally supported targets: a functional update of TarBase. Nucleic Acids Res 37:D155–D158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fiedler J, Jazbutyte V, Kirchmaier BC, Gupta SK, Lorenzen J, Hartmann D, Galuppo P, Kneitz S, Pena JT, Sohn-Lee C et al (2011) MicroRNA-24 regulates vascularity after myocardial infarction. Circulation 124:720–730

    Article  CAS  PubMed  Google Scholar 

  35. Mayorga ME, Penn MS (2012) miR-145 is differentially regulated by TGF-β1 and ischaemia and targets disabled-2 expression and wnt/β-catenin activity. J Cell Mol Med 16:1106–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li DF, Tian J, Guo X, Huang LM, Xu Y, Wang CC, Wang JF, Ren AJ, Yuan WJ, Lin L (2013) Induction of microRNA-24 by HIF-1 protects against ischemic injury in rat cardiomyocytes. Physiol Res 61:555–565

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Franco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Franco, D., Bonet, F., Hernandez-Torres, F., Lozano-Velasco, E., Esteban, F.J., Aranega, A.E. (2015). Analysis of microRNA Microarrays in Cardiogenesis. In: Guzzi, P. (eds) Microarray Data Analysis. Methods in Molecular Biology, vol 1375. Humana Press, New York, NY. https://doi.org/10.1007/7651_2015_247

Download citation

  • DOI: https://doi.org/10.1007/7651_2015_247

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3172-9

  • Online ISBN: 978-1-4939-3173-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics