Skip to main content

Methods and Techniques for miRNA Data Analysis

  • Protocol
  • First Online:
Microarray Data Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1375))

Abstract

Genomic data analysis consists of techniques to analyze and extract information from genes. In particular, genome sequencing technologies allow to characterize genomic profiles and identify biomarkers and mutations that can be relevant for diagnosis and designing of clinical therapies. Studies often regard identification of genes related to inherited disorders, but recently mutations and phenotypes are considered both in diseases studies and drug designing as well as for biomarkers identification for early detection.

Gene mutations are studied by comparing fold changes in a redundancy version of numeric and string representation of analyzed genes starting from macromolecules. This consists of studying often thousands of repetitions of gene representation and signatures identified by biological available instruments that starting from biological samples generate arrays of data representing nucleotides sequences representing known genes in an often not well-known sequence.

High-performance platforms and optimized algorithms are required to manipulate gigabytes of raw data that are generated by the so far mentioned biological instruments, such as NGS (standing for Next-Generation Sequencing) as well as for microarray. Also, data analysis requires the use of several tools and databases that store gene targets as well as gene ontologies and gene–disease association.

In this chapter we present an overview of available software platforms for genomic data analysis, as well as available databases with their query engines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang X, Zeng Y (2011) Performing custom microRNA microarray experiments. J Vis Exp 56:e3250. doi:10.3791/3250

    PubMed  Google Scholar 

  2. Schena M, Shalon D et al (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235)

    Google Scholar 

  3. Yin JQ, Zhao RC et al (2008) Profiling microRNA expression with microarrays. Trends Biotechnol 26(2):70–76. doi:10.1016/j.tibtech.2007.11.007

    Article  CAS  PubMed  Google Scholar 

  4. Brazma A, Hingamp P et al (2011) Minimum information about a microarray experiment (MIAME): toward standards for microarray data. Nat Genet 29(4):365–371

    Article  Google Scholar 

  5. David P, Bartel (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. doi:10.1016/j.cell.2009.01.002

    Article  Google Scholar 

  6. http://www.454.com

  7. http://technology.illumina.com/technology/next-generation-sequencing/solexatechnology.html

  8. http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solid-next-generation-sequencing.html

  9. Pop M, Salzberg SL (2008) Bioinformatics challenges of new sequencing technology. Trends Genet 24(3):142–149. doi:10.1016/j.tig.2007.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  11. http://journal.embnet.org/index.php/embnetjournal/article/view/200/479

  12. http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/

  13. Goecks J, Nekrutenko A et al (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11(8):R86

    Article  PubMed  PubMed Central  Google Scholar 

  14. Strand Life Sciences Pvt. Ltd. Strand NGS-formerly Avadis NGS, 2012, Version 1.3.0. San Francisco, CA: Strand Genomics, Inc.

    Google Scholar 

  15. http://www.genomics.agilent.com/en/Microarray-Data-Analysis-Software/GeneSpring-GX/?cid=AG-PT-130&tabId=AG-PR-1061

  16. Friedländer MR, Chen W et al (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26(4):407–415. doi:10.1038/nbt1394

    Article  PubMed  Google Scholar 

  17. Blankenberg D, Von Kuster G, et al (2010) Current protocols in molecular biology. Chapter 19:Unit 19.10.1-21

    Google Scholar 

  18. Giardine B, Riemer C et al (2005) Galaxy: a platform for interactive large-scale genome analysis. Genome Res 15(10):1451–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. http://training.bioinformatics.ucdavis.edu/docs/2012/09/BSC/ThuPM-miRNA.html

  20. http://hannonlab.cshl.edu/fastx_toolkit/commandline.html#fastx_barcode_splitter_usage

  21. Friedländer MR, Mackowiak SD et al (2012) miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 40(1):37–52. doi:10.1093/nar/gkr688

    Article  PubMed  PubMed Central  Google Scholar 

  22. Trapnell C, Pachter L et al (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111. doi:10.1093/bioinformatics/btp120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim D, Pertea G et al (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36. doi:10.1186/gb-2013-14-4-r36

    Article  PubMed  PubMed Central  Google Scholar 

  24. http://cole-trapnell-lab.github.io/cufflinks/

  25. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106. doi:10.1186/gb-2010-11-10-r106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gene ontology (2014) http://www.geneontology.org/

  27. Biclustering of gene expression data. Jesùs S. Aguilar-Ruiz

    Google Scholar 

  28. BLAST. http://blast.ncbi.nlm.nih.gov/Blast.cgi

  29. ENTREZ. http://www.ncbi.nlm.nih.gov/gquery/

  30. PubMed. http://www.ncbi.nlm.nih.gov/pubmed/

  31. EMBL. http://www.embl.org

  32. Kozomara A, Griffiths-Jones S (2013) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73. doi:10.1093/nar/gkt1181

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39(Database issue):D152–D157. doi:10.1093/nar/gkq1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ellison GM, Vicinanza C et al (2013) Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell 154(4):827–842

    Article  CAS  PubMed  Google Scholar 

  35. Leidinger P, Backes C et al (2013) A blood based 12-mirna signature of Alzheimer disease patients. Genome Biol 14:R78. doi:10.1186/gb-2013-14-7-r78

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shirdel EA, Xie W et al (2011) Navigating the micronome. using multiple microRNA prediction database to identify signalling pathway-associated microRNAs. PLoS One 6(2):e17429. doi:10.1371/journal.pone.0017429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Paraskevopoulou MD et al (2013) Diana-microt web server v5.0: service integration into mirna functional analysis workflows. Nucleic Acids Res 41(Web Server issue):W169–W173. doi:10.1093/nar/gkt393

    Article  PubMed  PubMed Central  Google Scholar 

  38. Betel D, Wilson M et al (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36(Database Issue):D149–D153

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Pictar. http://pictar.mdc-berlin.de

  40. TargetScan microRNA target prediction. http://www.targetscan.org/

  41. Wang X (2008) miRDB: a microRNA target prediction and functional annotation database with a wiki interface. RNA 14(6):1012–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dweep H, Sticht C et al (2011) miRWalk: database—prediction of possible miRNA binding sites by “walking” the genes of 3 genomes. J Biomed Inform 44:839–847

    Article  CAS  PubMed  Google Scholar 

  43. Kibbe WA, Arze C et al (2014) Disease ontology 2015 update: an expanded and updated database of human diseases for linking biomedical knowledge through disease data. Nucleic Acids Res 43:D1071–D1078, pii: gku1011

    Article  PubMed  PubMed Central  Google Scholar 

  44. Medical subject headings. http://www.nlm.nih.gov/mesh/

  45. ICD. http://www.who.int/classifications/icd

  46. Bauer-Mehren A, Bundschus M et al (2011) Gene-disease network analysis reveals functional modules in Mendelian, complex and environmental diseases. PLoS One 6(6):e20284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. http://www.disgenet.org/web/DisGeNET/v2.1/dbinfo

  48. Shannon P, Markiel A et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Reactome Fi Cytoscape Plugin. http://www.reactome.org

  50. Guanming W, Feng X et al (2010) A human functional protein interaction network and its application to cancer data analysis. Genome Biol 11(53)

    Google Scholar 

  51. Gade S, Porzelius C et al (2011) Graph based fusion of mirna and mrna expression data improves clinical outcome prediction in prostate cancer. BMC Bioinformatics 12:488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tian Z, Greene AS et al (2008) MicroRNA target pairs in the rat kidney identified by microRNA microarray, proteomic, and bioinformatic analysis. Genome Res 18:404–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pietro Hiram Guzzi, Pierangelo Veltri et al (2012) Unraveling multiple miRNA-mRNA associations through a graph-based approach. In: ACM BCB

    Google Scholar 

  54. Bo W, Mezlini Aziz M et al (2014) Similarity network fusion for aggregating data types on a genomic scale. Nat Methods 11:333–337. doi:10.1038/nmeth.2810

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Cristiano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cristiano, F., Veltri, P. (2015). Methods and Techniques for miRNA Data Analysis. In: Guzzi, P. (eds) Microarray Data Analysis. Methods in Molecular Biology, vol 1375. Humana Press, New York, NY. https://doi.org/10.1007/7651_2015_238

Download citation

  • DOI: https://doi.org/10.1007/7651_2015_238

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3172-9

  • Online ISBN: 978-1-4939-3173-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics