Skip to main content

26S and PA28-20S Proteasome Activity in Cytosolic Extracts from Embryonic Stem Cells

  • Protocol
  • First Online:
Embryonic Stem Cell Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1341))

Abstract

The proteasome is a complex multisubunit protease that plays a major role in the degradation of proteins in eukaryotic cells. Proteasome function is one of the key players regulating the proteome and it is vital for many cellular processes. The method described here makes it possible to assay the proteolytic capacities of proteasome complexes separately in crude cytosolic extracts from ES cells. The method is based on hydrolysis of a fluorogenic peptide substrate in lysates prepared under conditions that favor the interactions of the 20S proteasomal catalytical core with either the 19S or the PA28αβ proteasome regulator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhattacharyya S, Yu H, Mim C, Matouschek A (2014) Regulated protein turnover: snapshots of the proteasome in action. Nat Rev Mol Cell Biol 15:122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Cascio P (2014) PA28alphabeta: the enigmatic magic ring of the proteasome? Biomolecules 4:566

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Pickering AM, Linder RA, Zhang H, Forman HJ, Davies KJ (2012) Nrf2-dependent induction of proteasome and Pa28alphabeta regulator are required for adaptation to oxidative stress. J Biol Chem 287:10021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Li J, Powell SR, Wang X (2011) Enhancement of proteasome function by PA28α overexpression protects against oxidative stress. FASEB J 25:883

    Google Scholar 

  5. Brooks P, Fuertes G, Murray RZ, Bose S, Knecht E, Rechsteiner MC, Hendil KB, Tanaka K, Dyson J, Rivett J (2000) Subcellular localization of proteasomes and their regulatory complexes in mammalian cells. Biochem J 346(1):155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Chen X, Barton LF, Chi Y, Clurman BE, Roberts JM (2007) Ubiquitin-independent degradation of cell-cycle inhibitors by the REGγ proteasome. Mol Cell 26:843

    Google Scholar 

  7. Ustrell V, Hoffman L, Pratt G, Rechsteiner M (2002) PA200, a nuclear proteasome activator involved in DNA repair. EMBO J 21:3516

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hendil KB, Khan S, Tanaka K (1998) Simultaneous binding of PA28 and PA700 activators to 20S proteasomes. Biochem J 332:749

    Article  PubMed Central  PubMed  Google Scholar 

  9. Tanahashi N, Murakami Y, Minami Y, Shimbara N, Hendil KB, Tanaka K (2000) Hybrid proteasomes. Induction by interferon-gamma and contribution to ATP-dependent proteolysis. J Biol Chem 275:14336

    Article  CAS  PubMed  Google Scholar 

  10. Blickwedehl J, Agarwal M, Seong C, Pandita RK, Melendy T, Sung P, Pandita TK, Bangia N (2008) Role for proteasome activator PA200 and postglutamyl proteasome activity in genomic stability. Proc Natl Acad Sci U S A 105:16165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292:1552

    Article  CAS  PubMed  Google Scholar 

  12. Eisele F, Wolf DH (2008) Degradation of misfolded protein in the cytoplasm is mediated by the ubiquitin ligase Ubr1. FEBS Lett 582:4143

    Article  CAS  PubMed  Google Scholar 

  13. Djakovic SN, Schwarz LA, Barylko B, DeMartino GN, Patrick GN (2009) Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II. J Biol Chem 284:26655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Bose S, Brooks P, Mason GG, Rivett AJ (2001) Gamma-Interferon decreases the level of 26 S proteasomes and changes the pattern of phosphorylation. Biochem J 353:291

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Rivett AJ, Bose S, Pemberton AJ, Brooks P, Onion D, Shirley D, Stratford FLL, Forti K (2002) Assays of proteasome activity in relation to aging. Exp Gerontol 37:1217

    Article  CAS  PubMed  Google Scholar 

  16. Rosner M, Hengstschlager M (2008) Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: rapamycin triggers dephosphorylation and delocalization of the mTORC2 components rictor and sin1. Hum Mol Genet 17:2934

    Article  CAS  PubMed  Google Scholar 

  17. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell JE (2000) Molecular cell biology. WH Freeman, New York

    Google Scholar 

  18. Pickering AM, Koop AL, Teoh CY, Ermak G, Grune T, Davies KJA (2010) The immunoproteasome, the 20S proteasome and the PA28αβ proteasome regulator are oxidative-stress-adaptive proteolytic complexes. Biochem J 432:585

    Google Scholar 

  19. Kisselev AF, Goldberg AL (2005) Monitoring activity and inhibition of 26S proteasomes with fluorogenic peptide substrates. Methods Enzymol 398:364

    Article  CAS  PubMed  Google Scholar 

  20. Hernebring M, Fredriksson Å, Liljevald M, Cvijovic M, Norrman K, Wiseman J, Semb H, Nyström T (2013) Removal of damaged proteins during ES cell fate specification requires the proteasome activator PA28. Sci Rep 3:1381

    Article  PubMed Central  PubMed  Google Scholar 

  21. Reinheckel T, Sitte N, Ullrich O, Kuckelkorn U, Davies KJ, Grune T (1998) Comparative resistance of the 20S and 26S proteasome to oxidative stress. Biochem J 335:637

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Ferrington DA, Husom AD, Thompson LV (2005) Altered proteasome structure, function, and oxidation in aged muscle. FASEB J 19:644

    CAS  PubMed  Google Scholar 

  23. Dick LR, Cruikshank AA, Grenier L, Melandri FD, Nunes SL, Stein RL (1996) Mechanistic studies on the inactivation of the proteasome by lactacystin: a central role for clasto-lactacystin beta-lactone. J Biol Chem 271:7273

    Article  CAS  PubMed  Google Scholar 

  24. Meng L, Mohan R, Kwok BH, Elofsson M, Sin N, Crews CM (1999) Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci U S A 96:10403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Giguere CJ, Schnellmann RG (2008) Limitations of SLLVY-AMC in calpain and proteasome measurements. Biochem Biophys Res Commun 371:578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Bulteau AL, Lundberg KC, Humphries KM, Sadek HA, Szweda PA, Friguet B, Szweda LI (2001) Oxidative modification and inactivation of the proteasome during coronary occlusion/reperfusion. J Biol Chem 276:30057

    Article  CAS  PubMed  Google Scholar 

  27. Rodgers KJ, Dean RT (2003) Assessment of proteasome activity in cell lysates and tissue homogenates using peptide substrates. Int J Biochem Cell Biol 35:716

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Thanks are due to Prof. Thomas Nyström, Prof. Jennifer Rivett, and Dr. Fiona Stratford for their valuable intellectual and methodological input in the development in this protocol. In addition, Prof. Thomas Nystr­m and Dr. Madina Karimova kindly reviewed the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malin Hernebring .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hernebring, M. (2015). 26S and PA28-20S Proteasome Activity in Cytosolic Extracts from Embryonic Stem Cells. In: Turksen, K. (eds) Embryonic Stem Cell Protocols. Methods in Molecular Biology, vol 1341. Humana Press, New York, NY. https://doi.org/10.1007/7651_2015_216

Download citation

  • DOI: https://doi.org/10.1007/7651_2015_216

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2953-5

  • Online ISBN: 978-1-4939-2954-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics