Skip to main content

Generation and Characterization of Patient-Specific Induced Pluripotent Stem Cell for Disease Modeling

  • Protocol
  • First Online:
Patient-Specific Induced Pluripotent Stem Cell Models

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1353))

Abstract

One major hurdle to the development of effective treatments to many diseases is the lack of suitable human model systems. The ability to reprogram human somatic cells to induced pluripotent stem cells (iPSC) offers an excellent opportunity to generate human disease models with primary cells. Currently, several methods to generate iPSC lines exist, and iPSC can be generated from various tissue sources including skin fibroblasts, blood, hair follicles, dental tissue, and urine. In this chapter we describe the generation and characterization of iPSC from blood or fibroblast on a routine base and focus on the integration-free methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi:10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  2. Meissner A, Wernig M, Jaenisch R (2007) Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 25(10):1177–1181. doi:10.1038/nbt1335

    Article  CAS  PubMed  Google Scholar 

  3. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008) Induced pluripotent stem cells generated without viral integration. Science 322(5903):945–949. doi:10.1126/science.1162494

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Liu Q, Pedersen OZ, Peng J, Couture LA, Rao MS, Zeng X (2013) Optimizing dopaminergic differentiation of pluripotent stem cells for the manufacture of dopaminergic neurons for transplantation. Cytotherapy 15(8):999–1010. doi:10.1016/j.jcyt.2013.03.006

    Article  CAS  PubMed  Google Scholar 

  5. Burkhardt MF, Martinez FJ, Wright S, Ramos C, Volfson D, Mason M, Garnes J, Dang V, Lievers J, Shoukat-Mumtaz U, Martinez R, Gai H, Blake R, Vaisberg E, Grskovic M, Johnson C, Irion S, Bright J, Cooper B, Nguyen L, Griswold-Prenner I, Javaherian A (2013) A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Mol Cell Neurosci 56:355–364. doi:10.1016/j.mcn.2013.07.007

    Article  CAS  PubMed  Google Scholar 

  6. Zhao Y, Yin X, Qin H, Zhu F, Liu H, Yang W, Zhang Q, Xiang C, Hou P, Song Z, Liu Y, Yong J, Zhang P, Cai J, Liu M, Li H, Li Y, Qu X, Cui K, Zhang W, Xiang T, Wu Y, Liu C, Yu C, Yuan K, Lou J, Ding M, Deng H (2008) Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell 3(5):475–479. doi:10.1016/j.stem.2008.10.002, S1934-5909(08)00525-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  7. Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, Muhlestein W, Melton DA (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26(11):1269–1275. doi:10.1038/nbt.1502, nbt.1502 [pii]

    Article  CAS  PubMed  Google Scholar 

  8. Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458(7239):771–775. doi:10.1038/nature07864, nature07864 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Jia F, Wilson KD, Sun N, Gupta DM, Huang M, Li Z, Panetta NJ, Chen ZY, Robbins RC, Kay MA, Longaker MT, Wu JC (2010) A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7(3):197–199. doi:10.1038/nmeth.1426, nmeth.1426 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85(8):348–362, JST.JSTAGE/pjab/85.348 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Chou BK, Mali P, Huang X, Ye Z, Dowey SN, Resar LM, Zou C, Zhang YA, Tong J, Cheng L (2011) Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res 21(3):518–529. doi:10.1038/cr.2011.12, cr201112 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Li HO, Zhu YF, Asakawa M, Kuma H, Hirata T, Ueda Y, Lee YS, Fukumura M, Iida A, Kato A, Nagai Y, Hasegawa M (2000) A cytoplasmic RNA vector derived from nontransmissible Sendai virus with efficient gene transfer and expression. J Virol 74(14):6564–6569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Jin ZB, Okamoto S, Xiang P, Takahashi M (2012) Integration-free induced pluripotent stem cells derived from retinitis pigmentosa patient for disease modeling. Stem Cells Transl Med 1(6):503–509. doi:10.5966/sctm. 2012-0005, sctm.2012-0005 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Ono M, Hamada Y, Horiuchi Y, Matsuo-Takasaki M, Imoto Y, Satomi K, Arinami T, Hasegawa M, Fujioka T, Nakamura Y, Noguchi E (2012) Generation of induced pluripotent stem cells from human nasal epithelial cells using a Sendai virus vector. PLoS One 7(8):e42855. doi:10.1371/journal.pone.0042855, PONE-D-12-10273 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324(5928):797–801. doi:10.1126/science.1172482, 1172482 [pii]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  17. Sharifah NA, Nurismah MI, Lee HC, Aisyah AN, Clarence-Ko CH, Naqiyah I, Rohaizak M, Fuad I, A Jamal AR, Zarina AL, Nor Aina E, Normayah K, Nor Hisham A (2010) Identification of novel large genomic rearrangements at the BRCA1 locus in Malaysian women with breast cancer. Cancer Epidemiol 34(4):442–447. doi:10.1016/j.canep.2010.04.010

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianmin Zeng Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sivapatham, R., Zeng, X. (2014). Generation and Characterization of Patient-Specific Induced Pluripotent Stem Cell for Disease Modeling. In: Nagy, A., Turksen, K. (eds) Patient-Specific Induced Pluripotent Stem Cell Models. Methods in Molecular Biology, vol 1353. Humana Press, New York, NY. https://doi.org/10.1007/7651_2014_157

Download citation

  • DOI: https://doi.org/10.1007/7651_2014_157

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3033-3

  • Online ISBN: 978-1-4939-3034-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics