Skip to main content

Identification and Analysis of Circulating Exosomal microRNA in Human Body Fluids

  • Protocol
  • First Online:
Circulating MicroRNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1024))

Abstract

Exosomes are 40–100 nm sized vesicles released from cells when multivesicular bodies fuse with the plasma membrane. These vesicles take part in cell-to-cell communication by binding and signalling through membrane receptors on cells or by transferring proteins, RNA, and lipids into the cells. Exosomal RNA in body fluids, such as plasma and urine, has been associated with malignancies, making the exosomal RNA a potential biomarker for early detection of these diseases. This has increased the interest in the field of extracellular RNA and in particular, the interest in exosomal RNA.

In this chapter, a well-established exosome isolation method is described, as well as how to characterize the isolated vesicles by electron microscopy. Furthermore, two types of RNA isolation methods are described with a focus on isolating RNA from body fluids, which can be more viscous than cell culture media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pan BT, Teng K, Wu C et al (1985) Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 101:942–948

    Article  PubMed  CAS  Google Scholar 

  2. Harding C, Heuser J, Stahl P (1983) Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 97:329–339

    Article  PubMed  CAS  Google Scholar 

  3. Raposo G, Nijman HW, Stoorvogel W et al (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183:1161–1172

    Article  PubMed  CAS  Google Scholar 

  4. Zitvogel L, Regnault A, Lozier A et al (1998) Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 4:594–600

    Article  PubMed  CAS  Google Scholar 

  5. Thery C, Regnault A, Garin J et al (1999) Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol 147:599–610

    Article  PubMed  CAS  Google Scholar 

  6. Escola JM, Kleijmeer MJ, Stoorvogel W et al (1998) Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem 273:20121–20127

    Article  PubMed  CAS  Google Scholar 

  7. Andre F, Schartz NE, Movassagh M et al (2002) Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360:295–305

    Article  PubMed  CAS  Google Scholar 

  8. Valadi H, Ekstrom K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  PubMed  CAS  Google Scholar 

  9. Lim LP, Lau NC, Garrett-Engele P et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Article  PubMed  CAS  Google Scholar 

  10. Krek A, Grun D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500

    Article  PubMed  CAS  Google Scholar 

  11. Skog J, Wurdinger T, van Rijn S et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476

    Article  PubMed  CAS  Google Scholar 

  12. Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110:13–21

    Article  PubMed  CAS  Google Scholar 

  13. Lässer C, O’Neil SE, Ekerljung L et al (2011) RNA-containing exosomes in human nasal secretions. Am J Rhinol Allergy 25:89–93

    Article  PubMed  Google Scholar 

  14. Caby MP, Lankar D, Vincendeau-Scherrer C et al (2005) Exosomal-like vesicles are present in human blood plasma. Int Immunol 17:879–887

    Article  PubMed  CAS  Google Scholar 

  15. Vella LJ, Greenwood DL, Cappai R et al (2008) Enrichment of prion protein in exosomes derived from ovine cerebral spinal fluid. Vet Immunol Immunopathol 124:385–393

    Article  PubMed  CAS  Google Scholar 

  16. Pisitkun T, Shen RF, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA 101:13368–13373

    Article  PubMed  CAS  Google Scholar 

  17. Admyre C, Grunewald J, Thyberg J et al (2003) Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fluid. Eur Respir J 22:578–583

    Article  PubMed  CAS  Google Scholar 

  18. Keller S, Rupp C, Stoeck A et al (2007) CD24 is a marker of exosomes secreted into urine and amniotic fluid. Kidney Int 72:1095–1102

    Article  PubMed  CAS  Google Scholar 

  19. Skriner K, Adolph K, Jungblut PR et al (2006) Association of citrullinated proteins with synovial exosomes. Arthritis Rheum 54:3809–3814

    Article  PubMed  CAS  Google Scholar 

  20. Admyre C, Johansson SM, Qazi KR et al (2007) Exosomes with immune modulatory features are present in human breast milk. J Immunol 179:1969–1978

    PubMed  CAS  Google Scholar 

  21. Ogawa Y, Kanai-Azuma M, Akimoto Y et al (2008) Exosome-like vesicles with dipeptidyl peptidase IV in human saliva. Biol Pharm Bull 31:1059–1062

    Article  PubMed  CAS  Google Scholar 

  22. Prado N, Marazuela EG, Segura E et al (2008) Exosomes from bronchoalveolar fluid of tolerized mice prevent allergic reaction. J Immunol 181:1519–1525

    PubMed  CAS  Google Scholar 

  23. Qazi KR, Torregrosa Paredes P, Dahlberg B et al (2010) Proinflammatory exosomes in bronchoalveolar lavage fluid of patients with sarcoidosis. Thorax 65:1016–1024

    Article  PubMed  Google Scholar 

  24. Keller S, Konig AK, Marme F et al (2009) Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes. Cancer Lett 278:73–81

    Article  PubMed  CAS  Google Scholar 

  25. Rabinowits G, Gercel-Taylor C, Day JM et al (2009) Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 10:42–46

    Article  PubMed  CAS  Google Scholar 

  26. Michael A, Bajracharya SD, Yuen PS et al (2010) Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis 16:34–38

    Article  PubMed  CAS  Google Scholar 

  27. Nilsson J, Skog J, Nordstrand A et al (2009) Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer 100:1603–1607

    Article  PubMed  CAS  Google Scholar 

  28. Merchant ML, Powell DW, Wilkey DW et al (2010) Microfiltration isolation of human urinary exosomes for characterization by MS. Proteomics Clin Appl 4:84–96

    Article  PubMed  CAS  Google Scholar 

  29. Cheruvanky A, Zhou H, Pisitkun T et al (2007) Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. Am J Physiol Renal Physiol 292:F1657–F1661

    Article  PubMed  CAS  Google Scholar 

  30. Rood IM, Deegens JK, Merchant ML et al (2010) Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome. Kidney Int 78:810–816

    Article  PubMed  CAS  Google Scholar 

  31. Zhou Q, Li M, Wang X et al (2012) Immune-related microRNAs are abundant in breast milk exosomes. Int J Biol Sci 8:118–123

    Article  PubMed  CAS  Google Scholar 

  32. Ogawa Y, Miura Y, Harazono A et al (2011) Proteomic analysis of two types of exosomes in human whole saliva. Biol Pharm Bull 34:13–23

    Article  PubMed  CAS  Google Scholar 

  33. Eldh M, Lotvall J, Malmhall C et al (2012) Importance of RNA isolation methods for analysis of exosomal RNA: Evaluation of different methods. Mol Immunol 50:278–286

    Article  PubMed  CAS  Google Scholar 

  34. Moon PG, Lee JE, You S et al (2011) Proteomic analysis of urinary exosomes from patients of early IgA nephropathy and thin basement membrane nephropathy. Proteomics 11:2459–2475

    Article  PubMed  CAS  Google Scholar 

  35. Zhang Y, Li Y, Qiu F et al (2010) Comprehensive analysis of low-abundance proteins in human urinary exosomes using peptide ligand library technology, peptide OFFGEL fractionation and nanoHPLC-chip-MS/MS. Electrophoresis 31:3797–3807

    Article  PubMed  CAS  Google Scholar 

  36. Gonzales PA, Pisitkun T, Hoffert JD et al (2009) Large-scale proteomics and phosphoproteomics of urinary exosomes. J Am Soc Nephrol 20:363–379

    Article  PubMed  CAS  Google Scholar 

  37. Zhou H, Yuen PS, Pisitkun T et al (2006) Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int 69:1471–1476

    PubMed  CAS  Google Scholar 

  38. Fernandez-Llama P, Khositseth S, Gonzales PA et al (2010) Tamm-Horsfall protein and urinary exosome isolation. Kidney Int 77:736–742

    Article  PubMed  Google Scholar 

  39. Gonzalez-Begne M, Lu B, Han X et al (2009) Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). J Proteome Res 8:1304–1314

    Article  PubMed  CAS  Google Scholar 

  40. Hiemstra TF, Charles PD, Hester SS et al (2011) Uromodulin exclusion list improves urinary exosomal protein identification. J Biomol Tech 22:136–145

    PubMed  Google Scholar 

  41. Lässer C, Alikhani VS, Ekström K et al (2011) Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med 9:9

    Article  PubMed  Google Scholar 

  42. Miranda KC, Bond DT, McKee M et al (2010) Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int 78:191–199

    Article  PubMed  Google Scholar 

  43. Keller S, Ridinger J, Rupp AK et al (2011) Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med 9:86

    Article  PubMed  CAS  Google Scholar 

  44. Hata T, Murakami K, Nakatani H et al (2010) Isolation of bovine milk-derived microvesicles carrying mRNAs and microRNAs. Biochem Biophys Res Commun 396:528–533

    Article  PubMed  CAS  Google Scholar 

  45. Street JM, Barran PE, Mackay CL et al (2012) Identification and proteomic profiling of exosomes in human cerebrospinal fluid. J Transl Med 10:5

    Article  PubMed  CAS  Google Scholar 

  46. Lässer C, Eldh M, Lötvall J (2012) Isolation and characterization of RNA-containing exosomes. J Vis Exp (59):e3037.

    Google Scholar 

  47. Hoen EN, van der Vlist EJ, Aalberts M et al (2012) Quantitative and qualitative flow cytometric analysis of nanosized cell-derived membrane vesicles. Nanomedicine 8(5):712–720

    Article  Google Scholar 

  48. Berckmans RJ, Sturk A, van Tienen LM et al (2011) Cell-derived vesicles exposing coagulant tissue factor in saliva. Blood 117:3172–3180

    Article  PubMed  CAS  Google Scholar 

  49. Palanisamy V, Sharma S, Deshpande A et al (2010) Nanostructural and transcriptomic analyses of human saliva derived exosomes. PLoS One 5:e8577

    Article  PubMed  Google Scholar 

  50. Zhong H, Yang Y, Ma S et al (2011) Induction of a tumour-specific CTL response by exosomes isolated from heat-treated malignant ascites of gastric cancer patients. Int J Hyperthermia 27:604–611

    Article  PubMed  CAS  Google Scholar 

  51. Saman S, Kim W, Raya M et al (2012) Exosome-associated Tau Is Secreted in Tauopathy Models and Is Selectively Phosphorylated in Cerebrospinal Fluid in Early Alzheimer Disease. J Biol Chem 287:3842–3849

    Article  PubMed  CAS  Google Scholar 

  52. Choi DS, Park JO, Jang SC et al (2011) Proteomic analysis of microvesicles derived from human colorectal cancer ascites. Proteomics 11:2745–2751

    Article  PubMed  CAS  Google Scholar 

  53. Runz S, Keller S, Rupp C et al (2007) Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM. Gynecol Oncol 107:563–571

    Article  PubMed  CAS  Google Scholar 

  54. Asea A, Jean-Pierre C, Kaur P et al (2008) Heat shock protein-containing exosomes in mid-trimester amniotic fluids. J Reprod Immunol 79:12–17

    Article  PubMed  CAS  Google Scholar 

  55. Gallo A, Tandon M, Alevizos I et al (2012) The Majority of MicroRNAs Detectable in Serum and Saliva Is Concentrated in Exosomes. PLoS One 7:e30679

    Article  PubMed  CAS  Google Scholar 

  56. Gutwein P, Stoeck A, Riedle S et al (2005) Cleavage of L1 in exosomes and apoptotic membrane vesicles released from ovarian carcinoma cells. Clin Cancer Res 11:2492–2501

    Article  PubMed  CAS  Google Scholar 

  57. Dai S, Wei D, Wu Z et al (2008) Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol Ther 16:782–790

    Article  PubMed  CAS  Google Scholar 

  58. Bhatnagar S, Shinagawa K, Castellino FJ et al (2007) Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo. Blood 110:3234–3244

    Article  PubMed  CAS  Google Scholar 

  59. Li QL, Bu N, Yu YC et al (2008) Exvivo experiments of human ovarian cancer ascites-derived exosomes presented by dendritic cells derived from umbilical cord blood for immunotherapy treatment. Clin Med Oncol 2:461–467

    PubMed  CAS  Google Scholar 

  60. Bard MP, Hegmans JP, Hemmes A et al (2004) Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am J Respir Cell Mol Biol 31:114–121

    Article  PubMed  CAS  Google Scholar 

  61. Li Y, Zhang Y, Qiu F et al (2011) Proteomic identification of exosomal LRG1: a potential urinary biomarker for detecting NSCLC. Electrophoresis 32:1976–1983

    Article  PubMed  CAS  Google Scholar 

  62. Sharma S, Rasool HI, Palanisamy V et al (2010) Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy. ACS Nano 4:1921–1926

    Article  PubMed  CAS  Google Scholar 

  63. Zhang L, Hou D, Chen X et al (2012) Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22:107–126

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lässer, C. (2013). Identification and Analysis of Circulating Exosomal microRNA in Human Body Fluids. In: Kosaka, N. (eds) Circulating MicroRNAs. Methods in Molecular Biology, vol 1024. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-453-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-453-1_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-452-4

  • Online ISBN: 978-1-62703-453-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics