Skip to main content

The Collaborative Drug Discovery (CDD) Database

  • Protocol
  • First Online:
In Silico Models for Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 993))

Abstract

The broad goals of Collaborative Drug Discovery (CDD) are to enable a collaborative “cloud-based” tool to be used to bring together neglected disease researchers and other researchers from usually separate areas, to collaborate and to share compounds and drug discovery data in the research community, which will ultimately result in long-term improvements in the research enterprise and health care delivery. This chapter briefly introduces CDD software and describes applications in antimalarial and tuberculosis research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balganesh TS, Alzari PM, Cole ST (2008) Rising standards for tuberculosis drug development. Trends Pharmacol Sci 29:576–581

    Article  PubMed  CAS  Google Scholar 

  2. Payne DA et al (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Disc 6:29–40

    Article  CAS  Google Scholar 

  3. Zhang Y (2005) The magic bullets and tuberculosis drug targets. Annu Rev Pharmacol Toxicol 45:529–564

    Article  PubMed  CAS  Google Scholar 

  4. Carpy AJ, Marchand-Geneste N (2006) Structural e-bioinformatics and drug design. SAR QSAR Environ Res 17(1):1–10

    Article  PubMed  CAS  Google Scholar 

  5. Ertl P, Jelfs S (2007) Designing drugs on the internet? Free web tools and services supporting medicinal chemistry. Curr Top Med Chem 7(15):1491–1501

    Article  PubMed  CAS  Google Scholar 

  6. Munos B (2006) Can open-source R&D reinvigorate drug research? Nat Rev Drug Discov 5(9):723–729

    Article  PubMed  CAS  Google Scholar 

  7. Tralau-Stewart CJ et al (2009) Drug discovery: new models for industry-academic partnerships. Drug Discov Today 14(1–2):95–101

    Article  PubMed  Google Scholar 

  8. Williams AJ (2008) Internet-based tools for communication and collaboration in chemistry. Drug Discov Today 13(11–12):502–506

    Article  PubMed  CAS  Google Scholar 

  9. Williams AJ (2008) A perspective of publicly accessible/open-access chemistry databases. Drug Discov Today 13(11–12):495–501

    Article  PubMed  CAS  Google Scholar 

  10. Ekins S et al (2008) Molecular characterization of CYP2B6 substrates. Curr Drug Metab 9(5):363–373

    Article  PubMed  CAS  Google Scholar 

  11. Ekins S et al (2008) Computational discovery of novel low micromolar human pregnane X receptor antagonists. Mol Pharmacol 74:662–672

    Article  PubMed  CAS  Google Scholar 

  12. Nwaka S, Ridley RG (2003) Virtual drug discovery and development for neglected diseases through public-private partnerships. Nat Rev Drug Discov 2(11):919–928

    Article  PubMed  CAS  Google Scholar 

  13. Hohman M et al (2009) Novel web-based tools combining chemistry informatics, biology and social networks for drug discovery. Drug Disc Today 14:261–270

    Article  CAS  Google Scholar 

  14. Gamo F-J et al (2010) Thousands of chemical starting points for antimalarial lead identification. Nature 465:305–310

    Article  PubMed  CAS  Google Scholar 

  15. Ekins S, Williams AJ (2010) Meta-analysis of molecular property patterns and filtering of public datasets of antimalarial “hits” and drugs. Med Chem Comm 1:325–330

    Article  CAS  Google Scholar 

  16. Ekins S, Williams AJ (2010) When pharmaceutical companies publish large datasets: an abundance of riches or fool’s gold? Drug Disc Today 15:812–815

    Article  Google Scholar 

  17. Ekins S et al (2010) Analysis and hit filtering of a very large library of compounds screened against Mycobacterium tuberculosis. Mol Biosyst 6:2316–2324

    Article  PubMed  CAS  Google Scholar 

  18. Metz JT, Huth JR, Hajduk PJ (2007) Enhancement of chemical rules for predicting compound reactivity towards protein thiol groups. J Comput Aided Mol Des 21(1–3):139–144

    Article  PubMed  CAS  Google Scholar 

  19. Huth JR et al (2005) ALARM NMR: a rapid and robust experimental method to detect reactive false positives in biochemical screens. J Am Chem Soc 127(1):217–224

    Article  PubMed  CAS  Google Scholar 

  20. Lipinski CA et al (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Del Rev 23:3–25

    Article  CAS  Google Scholar 

  21. Oprea TI (2002) Current trends in lead discovery: are we looking for the appropriate properties? J Comput Aided Mol Des 16:325–334

    Article  PubMed  CAS  Google Scholar 

  22. Oprea TI et al (2001) Is there a difference between leads and drugs? A historical perspective. J Chem Inf Comput Sci 41:1308–1315

    Article  PubMed  CAS  Google Scholar 

  23. Rosen J et al (2009) Novel chemical space exploration via natural products. J Med Chem 52:1953–1962

    Article  PubMed  CAS  Google Scholar 

  24. Ekins S et al (2010) A collaborative database and computational models for tuberculosis drug discovery. Mol Biosyst 6:840–851

    Article  PubMed  CAS  Google Scholar 

  25. Guiguemde WA et al (2010) Chemical genetics of Plasmodium falciparum. Nature 465(7296):311–315

    Article  PubMed  CAS  Google Scholar 

  26. Gagaring, K., et al. Novartis-GNF malaria box. [cited]; Available from: ChEMBL-NTD (www.ebi.ac.uk/chemblntd)

  27. Maddry JA et al (2009) Antituberculosis activity of the molecular libraries screening center network library. Tuberculosis (Edinb) 89:354–363

    Article  CAS  Google Scholar 

  28. Ananthan S et al (2009) High-throughput screening for inhibitors of Mycobacterium tuberculosis H37Rv. Tuberculosis (Edinb) 89:334–353

    Article  CAS  Google Scholar 

  29. Ekins S, Freundlich JS (2011) Validating new tuberculosis computational models with public whole cell screening aerobic activity datasets. Pharm Res 28:1859–1869

    Article  PubMed  CAS  Google Scholar 

  30. Ekins S, Williams AJ (2010) Reaching out to collaborators: crowdsourcing for pharmaceutical research. Pharm Res 27(3):393–395

    Article  PubMed  CAS  Google Scholar 

  31. Williams AJ et al (2009) Free online resources enabling crowdsourced drug discovery. Drug Discov World 10:33–38

    CAS  Google Scholar 

  32. Louise-May S, Bunin B, Ekins S (2009) Towards integrated web-based tools in drug discovery. Touch Brief Drug Discov 6:17–21

    Google Scholar 

  33. Bingham A, Ekins S (2009) Competitive ­collaboration in the pharmaceutical and biotechnology industry. Drug Disc Today 14:1079–1081

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge our colleagues and the many researchers in the CDD community who have collaborated with us and each other.

The CDD TB database is funded by the Bill and Melinda Gates Foundation (Grant#49852 “Collaborative drug discovery for TB through a novel database of SAR data optimized to promote data archiving and sharing”).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ekins, S., Bunin, B.A. (2013). The Collaborative Drug Discovery (CDD) Database. In: Kortagere, S. (eds) In Silico Models for Drug Discovery. Methods in Molecular Biology, vol 993. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-342-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-342-8_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-341-1

  • Online ISBN: 978-1-62703-342-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics