Skip to main content

Structural Studies of SSB Interaction with RecO

  • Protocol
  • First Online:
Single-Stranded DNA Binding Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 922))

Abstract

Interaction of recombination protein RecO with single-stranded (ss) DNA-binding protein (SSB) is essential for DNA damage repair and restart of stalled replication (Cox, Crit Rev Biochem Mol Biol 42(1):41–63, 2007). To understand mechanism of this interaction and its role in DNA repair, we deciphered a high-resolution structure of RecO complex with C-terminal tail of SSB (SSB-Ct). The structure revealed a key role of hydrophobic interactions between two proteins and suggests the mechanism of RecO recruitment to DNA during homologous recombination and strand annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cox MM (2007) Regulation of bacterial RecA protein function. Crit Rev Biochem Mol Biol 42(1):41–63

    Article  PubMed  CAS  Google Scholar 

  2. Umezu K, Chi NW, Kolodner RD (1993) Biochemical interaction of the Escherichia coli RecF, RecO, and RecR proteins with RecA protein and single-stranded DNA binding protein. Proc Natl Acad Sci USA 90(9):3875–3879

    Article  PubMed  CAS  Google Scholar 

  3. Sakai A, Cox MM (2009) RecFOR and RecOR as distinct RecA loading pathways. J Biol Chem 284(5):3264–3272

    Article  PubMed  CAS  Google Scholar 

  4. Kapust RB, Waugh DS (2000) Controlled intracellular processing of fusion proteins by TEV protease. Protein Expr Purif 19(2):312–318

    Article  PubMed  CAS  Google Scholar 

  5. Stols L et al (2002) A new vector for high-throughput, ligation-independent cloning encoding a tobacco etch virus protease cleavage site. Protein Expr Purif 25:8–15

    Article  PubMed  CAS  Google Scholar 

  6. Makharashvili N, Koroleva O, Bera S, Grandgenett DP, Korolev S (2004) A novel structure of DNA repair protein RecO from Deinococcus radiodurans. Structure 12(10):1881–1889

    Article  PubMed  CAS  Google Scholar 

  7. Walsh MA, Dementieva I, Evans G, Sanishvili R, Joachimiak A (1999) Taking MAD to the extreme: ultrafast protein structure determination. Acta Crystallogr D Biol Crystallogr 55(Pt 6):1168–1173

    Article  PubMed  CAS  Google Scholar 

  8. Doublie S (1997) Preparation of selenomethioninyl proteins for phase determination. Methods Enzymol 276:523–530

    Article  PubMed  CAS  Google Scholar 

  9. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326

    Article  CAS  Google Scholar 

  10. McCoy AJ et al (2007) Phaser crystallographic software. J Appl Crystallogr 40(Pt 4):658–674

    Article  PubMed  CAS  Google Scholar 

  11. Adams PD et al (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66(Pt 2):213–221

    Article  PubMed  Google Scholar 

  12. Langer G, Cohen SX, Lamzin VS, Perrakis A (2008) Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc 3(7):1171–1179

    Article  PubMed  CAS  Google Scholar 

  13. Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66(Pt 4):486–501

    Article  PubMed  CAS  Google Scholar 

  14. Winn MD, Murshudov GN, Papiz MZ (2003) Macromolecular TLS refinement in REFMAC at moderate resolutions. Methods Enzymol 374:300–321

    Article  PubMed  CAS  Google Scholar 

  15. Brunger AT (2007) Version 1.2 of the Crystallography and NMR system. Nat Protoc 2(11):2728–2733

    Article  PubMed  CAS  Google Scholar 

  16. Berman HM et al (2000) The Protein Data Bank. Nucleic Acids Res 28(1):235–242

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by NIH grant GM073837. The coordinates of RecO–SSB-Ct complex and structure factors were deposited to PBD with ID 3Q8D. We are thankful to Olga Koroleva, who performed all cloning and participated in optimization of protein purification and crystallization procedures, to the staff of GM/CA beamline at APS, and, particularly, to Dr. R. Sanishvili for help in optimization of data collection from small crystals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Korolev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ryzhikov, M., Korolev, S. (2012). Structural Studies of SSB Interaction with RecO. In: Keck, J. (eds) Single-Stranded DNA Binding Proteins. Methods in Molecular Biology, vol 922. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-032-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-032-8_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-031-1

  • Online ISBN: 978-1-62703-032-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics