Skip to main content

De Novo Drug Design

  • Protocol
  • First Online:
Chemoinformatics and Computational Chemical Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 672))

Abstract

Computer-assisted molecular design supports drug discovery by suggesting novel chemotypes and compound modifications for lead structure optimization. While the aspect of synthetic feasibility of the automatically designed compounds has been neglected for a long time, we are currently witnessing an increased interest in this topic. Here, we review state-of-the-art software for de novo drug design with a special emphasis on fragment-based techniques that generate druglike, synthetically accessible compounds. The importance of scoring functions that can be used to predict compound reactivity and potency is highlighted, and several promising solutions are discussed. Recent practical validation studies are presented that have already demonstrated that rule-based fragment assembly can result in novel synthesizable compounds with druglike properties and a desired biological activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Danziger, D. J. and Dean, P. M. (1989) Automated site-directed drug design: a general algorithm for knowledge acquisition about hydrogen-bonding regions at protein surfaces. Proc R Soc Lond B Biol Sci 236, 101–13.

    Article  PubMed  CAS  Google Scholar 

  2. Schneider, G. and Fechner, U. (2005) Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov 4, 649–63.

    Article  PubMed  CAS  Google Scholar 

  3. Mauser, H. and Guba, W. (2008) Recent developments in de novo design and scaffold hopping. Curr Opin Drug Discov Devel 11, 365–74.

    PubMed  CAS  Google Scholar 

  4. Nikitin, S., Zaitseva, N., Demina, O., Solovieva, V., Mazin, E., Mikhalev, S., Smolov, M., Rubinov, A., Vlasov, P., Lepikhin, D., Khachko, D., Fokin, V., Queen, C., and Zosimov, V. (2005) A very large diversity space of synthetically accessible compounds for use with drug design programs. J Comput Aided Mol Des 19, 47–63.

    Article  PubMed  CAS  Google Scholar 

  5. Douguet, D., Munier-Lehmann H., Labesse G., and Pochet S. (2005) LEA3D: a computer-aided ligand design for structure-based drug design. J Med Chem 48, 2457–68.

    Article  PubMed  CAS  Google Scholar 

  6. Fechner, U. and Schneider, G. (2006) Flux (1): a virtual synthesis scheme for fragment-based de novo design. J Chem Inf Model 46, 699–707.

    Article  PubMed  CAS  Google Scholar 

  7. Fechner, U., and Schneider, G. (2007) Flux (2): comparison of molecular mutation and crossover operators for ligand-based de novo design. J Chem Inf Model 47, 656–67.

    Article  PubMed  CAS  Google Scholar 

  8. Degen, J. and Rarey, M. (2006) FlexNovo: structure-based searching in large fragment spaces. ChemMedChem 1, 854–68.

    Article  PubMed  CAS  Google Scholar 

  9. Feher, M., Gao, Y., Baber, C., Shirley, W. A., and Saunders, J. (2008) The use of ligand-based de novo design for scaffold hopping and sidechain optimization: two case studies. Bioorg Med Chem 16, 422–7.

    Article  PubMed  CAS  Google Scholar 

  10. Dey, F., and Caflisch, A. (2008) Fragment-based de novo ligand design by multiobjective evolutionary optimization. J Chem Inf Model 48, 679–90.

    Article  PubMed  CAS  Google Scholar 

  11. Proschak, E., Zettl, H., Tanrikulu, Y., Weisel, M., Kriegl, J. M., Rau, O., Schubert-Zsilavecz, M., and Schneider, G. (2009) From molecular shape to potent bioactive agents I: bioisosteric replacement of molecular fragments. ChemMedChem 4, 41–4.

    Article  PubMed  CAS  Google Scholar 

  12. Proschak, E., Sander, K., Zettl, H., Tanrikulu, Y., Rau, O., Schneider, P., Schubert-Zsilavecz, M., Stark, H., and Schneider, G. (2009) From molecular shape to potent bioactive agents II: fragment-based de novo design. ChemMedChem 4, 45–8.

    Article  PubMed  CAS  Google Scholar 

  13. Hecht, D. and Fogel, G. B. (2009) A novel in silico approach to drug discovery via computational intelligence. J Chem Inf Model 49, 1105–21.

    Article  PubMed  CAS  Google Scholar 

  14. Kutchukian, P. S., Lou, D., and Shakhnovich, E. I. (2009) FOG: fragment optimized growth algorithm for the de novo generation of molecules occupying druglike chemical space. J Chem Inf Model 49, 1630–42.

    Article  PubMed  CAS  Google Scholar 

  15. Moriaud, F., Doppelt-Azeroual, O., Martin, L., Oguievetskaia, K., Koch, K., Vorotyntsev, A., Adcock, S. A., and Delfaud, F. (2009) Computational fragment-based approach at PDB scale by protein local similarity. J Chem Inf Model 49, 280–94.

    Article  PubMed  CAS  Google Scholar 

  16. Nicolaou, C. A., Apostolakis, J., and Pattichis, C. S. (2009) De novo drug design using multiobjective evolutionary graphs. J Chem Inf Model 49, 295–307.

    Article  PubMed  CAS  Google Scholar 

  17. Nisius, B., and Rester, U. (2009) Fragment shuffling: an automated workflow for three-dimensional fragment-based ligand design. J Chem Inf Model 49, 1211–22.

    Article  PubMed  CAS  Google Scholar 

  18. Durrant, J. D., Amaro, R. E., and McCammon, J. A. (2009) AutoGrow: a novel algorithm for protein inhibitor design. Chem Biol Drug Des 73, 168–78.

    Article  PubMed  CAS  Google Scholar 

  19. Schneider, G. and Baringhaus, K.-H. (2008) Molecular Design, Wiley-VCH, Weinheim.

    Google Scholar 

  20. Schneider, G., Hartenfeller, M., Reutlinger, M., Tanrikulu, Y., Proschak, E., and Schneider, P. (2009) Voyages to the (un)known: adaptive design of bioactive compounds. Trends Biotechnol 27, 18–26.

    Article  PubMed  CAS  Google Scholar 

  21. Green, D. V. (2003) Virtual screening of virtual libraries. Prog Med Chem 41, 61–97.

    Article  PubMed  CAS  Google Scholar 

  22. Richardson, J. S. and Richardson, D. C. (1989) The de novo design of protein structures. Trends Biochem Sci 14, 304–9.

    Article  PubMed  CAS  Google Scholar 

  23. Richardson, J. S., Richardson, D. C., Tweedy, N. B., Gernert, K. M., Quinn, T. P., Hecht, M. H., Erickson, B. W., Yan, Y., McClain, R. D., and Donlan, M. E. (1992) Looking at proteins: representations, folding, packing, and design. Biophys J 63, 1185–209.

    Article  PubMed  CAS  Google Scholar 

  24. Lameijer, E. W., Tromp, R. A., Spanjersberg, R. F., Brussee, J., and Ijzerman, A. P. (2007) Designing active template molecules by combining computational de novo design and human chemist's expertise. J Med Chem 50, 1925–32.

    Article  PubMed  CAS  Google Scholar 

  25. Gillet, V. J., Khatib, W., Willett, P., Fleming, P. J. and Green, D. V. (2002) Combinatorial library design using a multiobjective genetic algorithm. J Chem Inf Comput Sci 42, 375–85.

    Article  PubMed  CAS  Google Scholar 

  26. Gillet V. J. (2008) New directions in library design and analysis. Curr Opin Chem Biol 12, 372–8.

    Article  PubMed  CAS  Google Scholar 

  27. Hopkins A. L., Groom C. R., and Alex A. (2004) Ligand efficiency: a useful metric for lead selection. Drug Discov Today 15, 430–1.

    Article  Google Scholar 

  28. Bembenek S. D., Tounge B. A., and Reynolds C. H. (2009) Ligand efficiency and fragment-based drug discovery. Drug Discov Today 14, 278–83.

    Article  PubMed  CAS  Google Scholar 

  29. Schneider, G., Lee, M., Stahl, M., and Schneider, P. (2000) De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks. J Comput Aided Mol Des 14, 487–94.

    Article  PubMed  CAS  Google Scholar 

  30. Pierce, A. C., Rao, G., and Bemis, G. W. (2004) BREED: generating novel inhibitors through hybridization of known ligands. Application to CDK2, P38, and HIV protease. J Med Chem 47, 2768–75.

    Article  PubMed  CAS  Google Scholar 

  31. Miranker, A. and Karplus, M. (1991) Functionality maps of binding sites: a multiple copy simultaneous search method. Proteins 11, 29–34.

    Article  PubMed  CAS  Google Scholar 

  32. RCSB Protein Data Bank, http://www.rcsb.org/pdb/ (accessed September 28, 2009).

  33. The PubChem Project, http://pubchem.ncbi.nlm.nih.gov/ (accessed September 28, 2009).

  34. Pearlman, D. A. and Murcko, M. A. (1996) CONCERTS: dynamic connection of fragments as an approach to de novo ligand design. J Med Chem 39, 1651–63.

    Article  PubMed  CAS  Google Scholar 

  35. Luo, Z., Wang, R., and Lai, L. (1996) RASSE: a new method for structure-based drug design. J Chem Inf Comput Sci 36, 1187–94.

    Article  PubMed  CAS  Google Scholar 

  36. Bohacek, R. S. and McMartin, C. (1994) Multiple highly diverse structures complementary to enzyme binding sites: results of extensive application of a de novo design method incorporating combinatorial growth. J Am Chem Soc 116, 5560–71.

    Article  CAS  Google Scholar 

  37. Gillett, V. A., Johnson, A. P., Mata, P., and Sike, S. (1990) Automated structure design in 3D. Tetrahedron Comput Method 3, 681–96.

    Article  Google Scholar 

  38. Rotstein, S. H. and Murcko, M. A. (1993) GenStar: a method for de novo drug design. J Comput Aided Mol Des 7, 23–43.

    Article  PubMed  CAS  Google Scholar 

  39. DeWitte, R. S. and Shakhnovich, E. I. (1996) SMoG: de novo design method based on simple, fast, and accurate free energy estimates. 1. Methodology and supporting evidence. J Am Chem Soc 118, 11733–44.

    Article  CAS  Google Scholar 

  40. Ishchenko, A. V. and Shakhnovich, E. I. (2002) SMall molecule growth 2001 (SMoG2001): an improved knowledge-based scoring function for protein – ligand interactions. J Med Chem 45, 2770–80.

    Article  PubMed  CAS  Google Scholar 

  41. Gillet, V. J., Johnson, A. P., Mata P., Sike, S., and Williams P. (1993) SPROUT: a program for structure generation. J Comput Aided Mol Des 7 , 127–53.

    Article  PubMed  CAS  Google Scholar 

  42. Gillet, V. J., Newell, W., Mata, P., Myatt, G., Sike, S., Zsoldos, Z. and Johnson, A. P. (1994) SPROUT: recent developments in the de novo design of molecules. J Comput Aided Mol Des 34 , 207–17.

    CAS  Google Scholar 

  43. Gillett, V. J., Myatt, G., Zsoldos, Z., and Johnson, A. P. (1995) SPROUT, HIPPO and CAESA: tools for de novo structure generation and estimation of synthetic accessibility. Perspect Drug Discov Des 3, 34–50.

    Article  Google Scholar 

  44. Böhm, H.-J. (1992) The computer program LUDI: a new simple method for the de-novo design of enzyme inhibitors. J Comput Aided Mol Des 6 , 61–78.

    Article  PubMed  Google Scholar 

  45. Böhm, H.-J. (1992) LUDI: rule-based automatic design of new substituents for enzyme inhibitor leads. J Comput Aided Mol Des 6 , 593–606.

    Article  PubMed  Google Scholar 

  46. Böhm, H.-J. (1993) A novel computational tool for automated structure-based drug design. Journal of Molecular Recognition, 6, 131–7.

    Article  PubMed  Google Scholar 

  47. Böhm, H.-J. (1994). The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. J Comput Aided Mol Des 8 , 243–56.

    Article  PubMed  Google Scholar 

  48. Böhm, H.-J. (1998). Prediction of binding constants of protein ligands: a fast method for the prioritization of hits obtained from de novo design or 3D database search programs. J Comput Aided Mol Des 12 , 309–23.

    Article  PubMed  Google Scholar 

  49. Tschinke, V. and Cohen, N. C. (1993) The NEWLEAD program: a new method for the design of candidate structures from pharmacophoric hypothesis. J Med Chem 36, 3863–70.

    Article  PubMed  CAS  Google Scholar 

  50. Thompson, D. C., Denny, R. A., Nilakantan, R., Humblet, C., Joseph-McCarthy, D., and Feyfant, E. (2008) CONFIRM: connecting fragments found in receptor molecules. J Comput Aided Mol Des 22, 761–72.

    Article  PubMed  CAS  Google Scholar 

  51. Markov, A.A., (1971) Extension of the limit theorems of probability theory to a sum of variables connected in a chain. In: Howard, R. (Ed.), Dynamic Probabilistic Systems, vol. 1, Markov Chains (reprinted in Appendix B), John Wiley and Sons, Hoboken.

    Google Scholar 

  52. Lewell, X. Q., Judd, D., Watson, S., and Hann, M. (1998) RECAP – retrosynthetic combinatorial analysis procedure: a powerful new technique for identifying privileged molecular fragments with useful applications in combinatorial chemistry. J Chem Inf Comput Sci 38, 511–22.

    Article  PubMed  CAS  Google Scholar 

  53. Boda, K., Seidel, T., and Gasteiger, J. (2007) Structure and reaction based evaluation of synthetic accessibility. J Comput Aided Mol Des 21, 311–25.

    Article  PubMed  CAS  Google Scholar 

  54. Law, J., Zsoldos, Z., Simon, A., Reid, D., Liu, Y., Khew, S. Y., Johnson, A. P., Major, S., Wade, R. A., and Ando, H. Y. (2009) Route designer: a retrosynthetic analysis tool utilizing automated retrosynthetic rule generation. J Chem Inf Model 49, 593–602.

    Article  PubMed  CAS  Google Scholar 

  55. Vinkers, H. M., de Jonge, M. R., Daeyaert, F. F., Heeres, J., Koymans, L. M., Lenthe, J. H., Lewi, P. J., Timmerman, H., Van Aken, K., and Janssen, P. A. (2003) SYNOPSIS: SYNthesize and OPtimize system in silico. J Med Chem 46, 2765–73.

    Article  PubMed  CAS  Google Scholar 

  56. Symyx Technology Inc., 2440 Camino Ramon, Suite 300, San Ramon, CA 94583, USA.

    Google Scholar 

  57. Daylight Chemical Information Systems, Inc., 120 Vantis-Suite 550, Aliso Viejo, CA 92656, USA.

    Google Scholar 

  58. Patel, H., Bodkin, M. J., Chen, B., and Gillet, V. J. (2009) Knowledge-based approach to de novo design using reaction vectors. J Chem Inf Model 49, 1163–84.

    Article  PubMed  CAS  Google Scholar 

  59. Reisen, F. H., Schneider, G., and Proschak, E. (2009) Reaction-MQL: line notation for functional transformation. J Chem Inf Model 49, 6–12.

    Article  PubMed  CAS  Google Scholar 

  60. Rupp, M., Proschak, E., and Schneider, G. (2007) Kernel approach to molecular similarity based on iterative graph similarity. J Chem Inf Model 47, 2280–6.

    Article  PubMed  CAS  Google Scholar 

  61. Bohacek R. S., McMartin C., and Guida W. C. (1996) The art and practice of structure-based drug design: a molecular modeling perspective. Med Res Rev 16, 3–50.

    Article  PubMed  CAS  Google Scholar 

  62. Mauser, H. and Stahl, M. (2007) Chemical fragment spaces for de novo design. J Chem Inf Model 47, 318–24.

    Article  PubMed  CAS  Google Scholar 

  63. Klebe G. and Böhm H. J. (1997) Energetic and entropic factors determining binding affinity in protein-ligand complexes. J Recept Signal Transduct Res 17, 459–73.

    Article  PubMed  CAS  Google Scholar 

  64. Jorissen, R. N., Reddy, G. S., Ali, A., Altman, M. D., Chellappan, S., Anjum, S. G., Tidor, B., Schiffer, C. A., Rana, T. M., and Gilson, M. K. (2009) Additivity in the analysis and design of HIV protease inhibitors. J Med Chem 52,737–54.

    Article  PubMed  CAS  Google Scholar 

  65. Rarey, M., Kramer, B., Lengauer, T., and Klebe, G. (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261, 470–89.

    Article  PubMed  CAS  Google Scholar 

  66. Cramer, R. D., Poss, M. A., Hermsmeier, M. A., Caulfield, T. J., Kowala, M. C., and Valentine, M. T. (1999) Prospective identification of biologically active structures by topomer shape similarity searching. J Med Chem 42, 3919–33.

    Article  PubMed  Google Scholar 

  67. Rarey, M. and Stahl, M. (2001) Similarity searching in large combinatorial chemistry spaces. J Comput Aided Mol Des 15, 497–520.

    Article  PubMed  CAS  Google Scholar 

  68. Rarey, M. and Dixon, S. (1998) Feature trees: a new molecular similarity measure based on tree matching. J Comput Aided Mol Des 12, 471–90.

    Article  PubMed  CAS  Google Scholar 

  69. Boehm, M., Wu, T. Y., Claussen, H., and Lemmen, C. (2008) Similarity searching and scaffold hopping in synthetically accessible combinatorial chemistry spaces. J Med Chem 51, 2468–80.

    Article  PubMed  CAS  Google Scholar 

  70. Lessel, U., Wellenzohn, B., Lilienthal, M., and Claussen, H. (2009) Searching fragment spaces with feature trees. J Chem Inf Model 49, 270–9.

    Article  PubMed  CAS  Google Scholar 

  71. Agarwal, A. K., Johnson, A. P., and Fishwick, C. W. (2008) Synthesis of de novo designed small-molecule inhibitors of bacterial RNA polymerase. Tetrahedron 64, 10049–54.

    Article  CAS  Google Scholar 

  72. Sova, M., Cadez, G., Turk, S., Majce, V., Polanc, S., Batson, S., Lloyd, A. J., Roper, D. I., Fishwick, C. W., and Gobec, S. (2009) Design and synthesis of new hydroxyethylamines as inhibitors of D-alanyl-D-lactate ligase (VanA) and D-alanyl-D-alanine ligase (DdlB). Bioorg Med Chem Lett 19, 1376–9.

    Article  PubMed  CAS  Google Scholar 

  73. Park, H., Bahn, Y. J., and Ryu, S. E. (2009) Structure-based de novo design and biochemical evaluation of novel Cdc25 phosphatase inhibitors. Bioorg Med Chem Lett 19, 4330–4.

    Article  PubMed  CAS  Google Scholar 

  74. Wang, R., Gao, Y., and Lai, L. (2000) LigBuilder: a multi-purpose program for structure-based drug design. J Mol Model 6, 498–516.

    Article  CAS  Google Scholar 

  75. Schüller, A., Suhartono, M., Fechner, U., Tanrikulu, Y., Breitung, S., Scheffer, U., Göbel, M. W., and Schneider, G. (2008) The concept of template-based de novo design from drug-derived molecular fragments and its application to TAR RNA. J Comput Aided Mol Des 22, 59–68.

    Article  PubMed  Google Scholar 

  76. Schneider, G., Neidhart, W., Giller, T., and Schmid, G. (1999) “Scaffold-Hopping” by topological pharmacophore search: a contribution to virtual screening. Angew Chem Int Ed 38 , 2894–6.

    Article  CAS  Google Scholar 

  77. Mauser, H. and Guba, W. (2008) Recent developments in de novo design and scaffold hopping. Curr Opin Drug Discovery Dev 11, 365–74.

    CAS  Google Scholar 

  78. Todorov, N. P., Buenemann, C. L., and Alberts, I. L. (2006) De novo ligand design to an ensemble of protein structures. Proteins: Struct, Funct, Bioinf 64, 43–59.

    Article  CAS  Google Scholar 

  79. Alberts, I. L., Todorov, N. P., and Dean, P. M. (2005) Receptor flexibility in de novo ligand design and docking. J Med Chem 48, 6585–96.

    Article  PubMed  CAS  Google Scholar 

  80. Maass, P., Schulz-Gasch, T., Stahl, M., and Rarey, M. (2007) Recore: a fast and versatile method for scaffold hopping based on small molecule crystal structure conformations. J Chem Inf Model 47, 390–9.

    Article  PubMed  CAS  Google Scholar 

  81. Grabowski, K., Proschak, E., Baringhaus, K., Rau, O., Schubert-Zsilaveczc, M., and Schneider, G. (2008) Bioisosteric replacement of molecular scaffolds: fromnatural products to synthetic compounds. Nat Prod Commun 3, 1355–60.

    CAS  Google Scholar 

  82. Hartenfeller, M., Proschak, E., Schüller, A., and Schneider, G. (2008) Concept of combinatorial de novo design of drug-like molecules by particle swarm optimization. Chem Biol Drug Des 72, 16–26.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Herbert Köppen and Karl-Heinz Baringhaus for stimulating discussion. M.H. is grateful to Merz Pharmaceuticals for a scholarship. This research was supported by the Beilstein Institut zur Förderung der Chemischen Wissenschaften and the DFG (SFB579, project A11.2).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hartenfeller, M., Schneider, G. (2010). De Novo Drug Design. In: Bajorath, J. (eds) Chemoinformatics and Computational Chemical Biology. Methods in Molecular Biology, vol 672. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-839-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-839-3_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-838-6

  • Online ISBN: 978-1-60761-839-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics