Skip to main content

UNAFold

Software for Nucleic Acid Folding and Hybridization

  • Protocol
Bioinformatics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 453))

Abstract

The UNAFold software package is an integrated collection of programs that simulate folding, hybridization, and melting pathways for one or two single-stranded nucleic acid sequences. The name is derived from “Unified Nucleic Acid Folding.” Folding (secondary structure) prediction for single-stranded RNA or DNA combines free energy minimization, partition function calculations and stochastic sampling. For melting simulations, the package computes entire melting profiles, not just melting temperatures. UV absorbance at 260 nm, heat capacity change (Cp), and mole fractions of different molecular species are computed as a function of temperature. The package installs and runs on all Unix and Linux platforms that we have looked at, including Mac OS X. Images of secondary structures, hybridizations, and dot plots may be computed using common formats. Similarly, a variety of melting profile plots is created when appropriate. These latter plots include experimental results if they are provided. The package is “command line” driven. Underlying compiled programs may be used individually, or in special combinations through the use of a variety of Perl scripts. Users are encouraged to create their own scripts to supplement what comes with the package. This evolving software is available for download at http://www.bioinfo.rpi.edu/applications/hybrid/download.php.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    * Zimmerly Lab Web site http://www.fp.ucalgary.ca/group2introns/

  2. 2.

    * Long command lines may be broken into multiple lines if a backslash, \, is the last character of all but the final line.

References

  1. Bellman, R. E. (1957)Dynamic Programming. Princeton University Press, Princeton, NJ.

    Google Scholar 

  2. Waterman, M. S., Smith, T. F. (1978) RNA secondary structure: a complete mathematical analysis.Math Biosci 42, 257–266.

    Article  CAS  Google Scholar 

  3. Waterman, M. S. (1978) Secondary structure of single-stranded nucleic acids, in (Rota, G.-C., ed.),Studies in Foundations and Combinatorics, Academic Press, New York.

    Google Scholar 

  4. Nussinov, R. (1980) Some rules for ordering nucleotides in DNA.Nucleic Acids Res 8, 4545–4562.

    Article  PubMed  CAS  Google Scholar 

  5. Zuker, M., Stiegler, P. (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information.Nucleic Acids Res 9, 133–148.

    Article  PubMed  CAS  Google Scholar 

  6. Sankoff, D., Kruskal, J. B., eds. (1983)Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison. Addison-Wesley, Reading, MA.

    Google Scholar 

  7. Zuker, M. (1989) The use of dynamic programming algorithms in RNA secondary structure prediction, in (Waterman, M. S., ed.),Mathematical Methods for DNA Sequences. CRC Press, Boca Raton, FL.

    Google Scholar 

  8. Zuker, M. (1994) Prediction of RNA secondary structure by energy minimization, in (Griffin, A. M., Griffin, H. G., eds.),Computer Analysis of Sequence Data,. Humana Press, Totowa, NJ.

    Google Scholar 

  9. Zuker, M., Mathews, D. H., Turner, D. H. (1999) Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide, in (Barciszewski J., Clark, B. F. C., eds.),RNA Biochemistry and Biotechnology. Kluwer, Dordrecht.

    Google Scholar 

  10. Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction.Nucleic Acids Res 31, 3406–3415.

    Article  PubMed  CAS  Google Scholar 

  11. Hofacker, I. L., Fontana, W., Stadler, P. F., et al. (1994) Fast folding and comparison of RNA secondary structures.Monatsh Chem 125, 167–188.

    Article  CAS  Google Scholar 

  12. Wuchty, S., Fontana, W., Hofacker, I. L., et al. (1999) Complete suboptimal folding of RNA and the stability of secondary structures.Biopolymers 49, 145–165.

    Article  PubMed  CAS  Google Scholar 

  13. Hofacker, I. L. (2003) Vienna RNA secondary structure server.Nucleic Acids Res 31, 3429–3431.

    Article  PubMed  CAS  Google Scholar 

  14. McCaskill, J. S. (1990) The equilibrium partition function and base pair binding probabilities for RNA secondary structure.Biopolymers 29, 1105–1119.

    Article  PubMed  CAS  Google Scholar 

  15. Ding, Y., Lawrence, C. E. (2001) Statistical prediction of single-stranded regions in RNA secondary structure and application to predicting effective antisense target sites and beyond.Nucleic Acids Res 29, 1034–1046.

    Article  PubMed  CAS  Google Scholar 

  16. Ding, Y., Lawrence, C. E. (2003) A statistical sampling algorithm for RNA secondary structure prediction.Nucleic Acids Res 31, 7280–7301.

    Article  PubMed  CAS  Google Scholar 

  17. Ding, Y., Lawrence, C. E. (2004) Sfold web server for statistical folding and rational design of nucleic acids.Nucleic Acids Res 32, W135–W141.

    Article  PubMed  CAS  Google Scholar 

  18. Allawi, H. A., SantaLucia, J. Jr. (1997) Thermodynamics and NMR of internal G.T mismatches in DNA.Biochemistry 36, 10581–10594.

    Article  PubMed  CAS  Google Scholar 

  19. SantaLucia, J. Jr. (1998) A unified view of polymer, dumbell, and oligonucleotide DNA nearest-neighbor thermodynamics.Proc Natl Acad Sci U S A 95, 1460–1465.

    Article  PubMed  CAS  Google Scholar 

  20. SantaLucia, J. Jr., Hicks, D. (2004) The thermodynamics of DNA structural motifs.Annu Rev Biophys Biom 33, 415–440.

    Article  CAS  Google Scholar 

  21. Zhang, Y., Hammer, D. A., Graves, D. J. (2005) Competitive hybridization kinetics reveals unexpected behavior patterns.Bio-phys J 89, 2950–2959.

    CAS  Google Scholar 

  22. Kilgard, M. J. (1996)OpenGL Programming for the X Window System. Addison-Wesley, Boston.

    Google Scholar 

  23. Puglisi, J. D., Tinoco, I. Jr. (1989) Absorb-ance melting curves of RNA, in (Dahlberg, J. E., Abelson, J. N. eds.),RNA Processing Part A: General Methods. Academic Press, New York.

    Google Scholar 

  24. Waugh, A., Gendron, P., Altman, R., et al. (2002) RNAML: a standard syntax for exchanging RNA information.RNA 8, 707–717.

    Article  PubMed  CAS  Google Scholar 

  25. Jelesarov, I., Bosshard, H. R. (1999) Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomo-lecular recognition.J Mol Recog 12, 3–18.

    Article  CAS  Google Scholar 

  26. Walter, A. E., Turner, D. H., Kim, J., et al. (1994) Coaxial stacking of helixes enhances binding of oligoribonucleotides and improves predictions of RNA.Proc Natl Acad Sci U S A 91, 9218–9222.

    Article  PubMed  CAS  Google Scholar 

  27. Mathews, D. H., Sabina, J., Zuker, M., et al. (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure.J Mol Biol 288:911–940.

    Article  Google Scholar 

  28. De Rijk, P., De Wachter, R. (1997) RnaViz2, a program for the visualisation of RNA secondary structure.Nucleic Acids Res 25, 4679–4684.

    Article  PubMed  Google Scholar 

  29. De Rijk, P., De Wachter, R. (2003) RnaViz2: an improved representation of RNA secondary structure.Bioinformatics 19, 299–300.

    Article  PubMed  Google Scholar 

  30. Dai, L. Zimmerly, S. (2002) Compilation and analysis of group II intron insertions in bacterial genomes: evidence for retro-element behavior.Nucleic Acids Res 30, 1091–1102.

    Article  PubMed  CAS  Google Scholar 

  31. Toor, N., Hausner, G., Zimmerly, S. (2001) Coevolution of group II intron RNA structures with their intron-encoded reverse transcriptases.RNA 7, 1142–1152.

    Article  PubMed  CAS  Google Scholar 

  32. Michel, F., Umesono, K., Ozeki, H. (1989) Comparative and functional anatomy of group II catalytic introns: a review.Gene 82, 5–30.

    Article  PubMed  CAS  Google Scholar 

  33. Zuker, M., Jacobson, A. B. (1998) Using reliability information to annotate RNA secondary structures.RNA 4, 669–679.

    Article  PubMed  CAS  Google Scholar 

  34. Jacobson, A. B., Arora, R., Zuker, M., et al. (1998) Structural plasticity in RNA and its role in the regulation of protein translation in coliphage qβ.J Mol Biol 275, 589–600.

    Article  PubMed  CAS  Google Scholar 

  35. Mathews, D. H. (2004) Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization.RNA 10, 1174–1177.

    Article  Google Scholar 

  36. Markham, N. R., Zuker, M. (2005) DINAMelt web server for nucleic acid melting prediction.Nucleic Acids Res 33, W577–W581.

    Article  PubMed  CAS  Google Scholar 

  37. Tyagi, S., Kramer, F. R. (1996) Molecular beacons: probes that fluoresce upon hybridization.Nat Biotechnol 4, 303–308.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by grants GM54250 and GM068564 from the National Institutes of Health and by a graduate fellowship to N.R.M. from RPI.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Markham, N.R., Zuker, M. (2008). UNAFold. In: Keith, J.M. (eds) Bioinformatics. Methods in Molecular Biology™, vol 453. Humana Press. https://doi.org/10.1007/978-1-60327-429-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-429-6_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-428-9

  • Online ISBN: 978-1-60327-429-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics