Skip to main content

Metabolomics Data Analysis, Visualization, and Integration

  • Protocol
Plant Bioinformatics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 406))

Summary

Metabolomics is the large-scale analysis of metabolites and as such requires bioinformatics tools for data analysis, visualization, and integration. This chapter describes the basic composition of chromatographically coupled mass spectrometry (MS) data sets used in metabolomics and describes in detail the steps necessary for extracting large-scale qualitative and quantitative information. This process involves noise filtering, peak picking and deconvolution, peak identification, peak alignment, and the creation of a final data matrix for statistical processing. Multivariate tools for comparative analysis are presented and illustrated using data for Medicago truncatula. Additional tools for visualizing and integrating metabolomics data within a biological context are discussed. Two tables are provided listing current metabolomics data processing and visualization software. Because metabolomics is rapidly maturing, a final section is presented concerning the need for data standardization and current efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Sumner, L., Mendes, P., and Dixon, R. (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62, 817–836.

    Article  CAS  PubMed  Google Scholar 

  2. Fiehn, O. (2002) Metabolomics–the link between genotypes and phenotypes. Plant Mol. Biol. 48, 155–171.

    Article  CAS  PubMed  Google Scholar 

  3. Oliver, S., Winson, M., Kell, D., and Baganz, F. (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol. 16, 373–378.

    Article  CAS  PubMed  Google Scholar 

  4. Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R., and Willmitzer, L. (2000) Metabolite profiling for plant functional genomics. Nat. Biotechnol. 18, 1157–1161.

    Article  CAS  PubMed  Google Scholar 

  5. Trethewey, R. N., Krotzky, A. J., and Willmitzer, L. (1999) Metabolic profiling: a rosetta stone for genomics? Curr. Opin. Biotechnol. 2, 83–85.

    CAS  Google Scholar 

  6. Weckwerth, W. (2003) Metabolomics in systems biology. Annu. Rev. Plant Biol. 54, 669–689.

    Article  CAS  PubMed  Google Scholar 

  7. Fernie, A., Trethewey, R., Krotzky, A., and Willmitzer, L. (2004) Metabolite profiling: from diagnostics to systems biology. Nat. Rev. Mol. Cell Biol. 5, 763–769.

    Article  CAS  PubMed  Google Scholar 

  8. Broeckling, C. D., Huhman, D. V., Farag, M. A., Smith, J. T., May, G. D., Mendes, P., Dixon, R. A., and Sumner, L. W. (2005) Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J. Exp. Bot. 56, 323–336.

    Article  CAS  PubMed  Google Scholar 

  9. Gygi, S. P., Rochon, Y., Franza, B. R., and Aebersold, R. (1999) Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19, 1720–1730.

    CAS  PubMed  Google Scholar 

  10. Somerville, C., and Dangl, J. (2000) Plant biology in 2010. Science 290, 2077–2078.

    Article  CAS  PubMed  Google Scholar 

  11. Somerville, C., and Somerville, S. (1999) Plant functional genomics. Science 285, 380–383.

    Article  CAS  PubMed  Google Scholar 

  12. Dixon, R. A. (2001) Phytochemistry in the genomics and post-genomics eras. Phytochemistry 57, 145–148.

    Article  CAS  PubMed  Google Scholar 

  13. Hartman, T., Kutchan, T. M., and Strack, D. (2005) Evolution of metabolic diversity. Phytochemistry 66, 1198–1199.

    Article  Google Scholar 

  14. Roessner, U., Luedemann, A., Brust, D., Fiehn, O., Linke, T., Willmitzer, L., and Fernie, A. R. (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13, 11–29.

    Article  CAS  PubMed  Google Scholar 

  15. Roessner, U., Wagner, C., Kopka, J., Trethewey, R. N., and Willmitzer, L. (2000) Simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J. 23, 131–142.

    Article  CAS  PubMed  Google Scholar 

  16. Schauer, N., Steinhauser, D., Strelkov, S., Schomburg, D., Allison, G., Moritz, T., Lundgren, K., Roessner-Tunali, U., Forbes, M., Willmitzer, L., Fernie, A., and Kopka, J. (2005) GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett. 579, 1332–1337.

    Article  CAS  PubMed  Google Scholar 

  17. Wagner, C., Sefkow, M., and Kopka, J. (2003) Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. Phytochemistry 62, 887–900.

    Article  CAS  PubMed  Google Scholar 

  18. Welthagen, W., Shellie, R. A., Spranger, J., Ristow, M., Zimmermannn, R., and Fiehn, O. (2005) Comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC x GC-TOF) for high resolution metabolomics: biomarker discovery on spleen tissue extracts of obese NZO compared to lean C57BL/6 mice. Metabolomics 1, 65–73.

    Article  CAS  Google Scholar 

  19. Huhman, D., and Sumner, L. (2002) Metabolic profiling of saponins in Medicago sativa and Medicago truncatula using HPLC coupled to an electrospray ion-trap mass spectrometer. Phytochemistry 59, 347–360.

    Article  CAS  PubMed  Google Scholar 

  20. Sumner, L. W. (2006) Current status and forward looking thoughts on LC-MS metabolomics, in Biotechnology in Agriculture and Forestry: Plant Metabolomics (Saito, K., Dixon, R.A., Willmitzer, L., Ed.), Springer-Verlag, Berlin, Vol. 57, pp. 21–32.

    Google Scholar 

  21. Sumner, L. W., Huhman, D. V., Urbanczyk-Wochniak, E., and Lei, Z. (2007) Methods, Applications, and Concepts of Metabolic Profiling: Secondary metabolism, in Plant System Biology, Fernie, A., Baginsky, S. Eds, Bierkenhauser-Verlag, Berlin, Germany 195–212. (ISBN 13: 978-3-7643-7261-3).

    Chapter  Google Scholar 

  22. Tolstikov, V. V., and Fiehn, O. (2002) Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Anal. Biochem. 301, 298–307.

    Article  CAS  PubMed  Google Scholar 

  23. Takats, Z., Wiseman, J. M., Gologan, B., and Cooks, R. G. (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306, 471–473.

    Article  CAS  PubMed  Google Scholar 

  24. Bino, R. J., Hall, R. D., Fiehn, O., Kopka, J., Saito, K., Draper, J., Nikolau, B. J., Mendes, P., Roessner-Tunali, U., Beale, M. H., Trethewey, R. N., Lange, B. M., Wurtele, E. S., and Sumner, L. W. (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci. 9, 418–425.

    Article  CAS  PubMed  Google Scholar 

  25. Birkemeyer, C., Kolasa, A., and Kopka, J. (2003) Comprehensive chemical derivatization for gas chromatography-mass spectrometry-based multi-targeted profiling of the major phytohormones. J. Chromatogr. A 993, 89–102.

    Article  CAS  PubMed  Google Scholar 

  26. Muller, A., Duchting, P., and Weiler, E. (2002) A multiplex GC-MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana. Planta 216, 44–56.

    Article  CAS  PubMed  Google Scholar 

  27. Huhman, D., Berhow, M., and Sumner, L. (2005) Quantification of saponins in aerial and subterranean tissues of Medicago truncatula. J. Agric. Food Chem. 53, 1914–1920.

    Article  CAS  PubMed  Google Scholar 

  28. Frydman, A., Weisshaus, O., Bar-Peled, M., Huhman, D. V., Sumner, L. W., Marin, F. R., Lewinsohn, E., Fluhr, R., Gressel, J., and Eyal, Y. (2004) Citrus fruit bitter flavors: isolation and functional characterization of the gene encoding a 1,2 rhamnosyltransferase, a key enzyme in the biosynthesis of the bitter flavonoids of citrus. Plant J. 40, 88–100.

    Article  CAS  PubMed  Google Scholar 

  29. Liu, C., Huhman, D., Sumner, L., and Dixon, R. (2003) Regiospecific hydroxylation of isoflavones by cytochrome p450 81E enzymes from Medicago truncatula. Plant J. 36, 471–484.

    Article  CAS  PubMed  Google Scholar 

  30. Baggett, B. R., Cooper, J. D., Hogan, E. T., Carper, J., Paiva, N. L., and Smith, J. T. (2002) Profiling isoflavonoids found in legume root extracts using capillary electrophoresis. Electrophoresis 23, 1642–1651.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, J., Broeckling, C., Blancaflor, E., Sledge, M., Sumner, L., and Wang, Z. (2005) Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa). Plant J. 42, 689–707.

    Article  CAS  PubMed  Google Scholar 

  32. Wilson, I., Nicholson, J., Castro-Perez, J., Granger, J., Johnson, K., Smith, B., and Plumb, R. (2005) High resolution “ultra performance” liquid chromatography coupled to oa-TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies. J. Proteome Res. 4, 591–598.

    Article  CAS  PubMed  Google Scholar 

  33. Danielsson, R., Bylund, D., and Markides, K. (2002) Matched filtering with background suppression for improved quality of base peak chromatograms and mass spectra in liquid chromatography-mass spectrometry. Anal. Chim. Acta 454, 167–184.

    Article  CAS  Google Scholar 

  34. Duran, A. L., Yang, J., Wang, L., and Sumner, L. W. (2003) Metabolomics spectral formatting, alignment and conversion tools (MSFACTs). Bioinformatics 19, 2283–2293.

    Article  CAS  PubMed  Google Scholar 

  35. Smith, C., Want, E., O’Maille, G., Abagyan, R., and Siuzdak, G. (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787.

    Article  CAS  PubMed  Google Scholar 

  36. Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmuller, E., Dormann, P., Weckwerth, W., Gibon, Y., Stitt, M., Willmitzer, L., Fernie, A. R., and Steinhauser, D. (2005) GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics 21, 1635–1638.

    Article  CAS  PubMed  Google Scholar 

  37. Halket, J., Przyborowska, A., Stein, S., Mallard, W., Down, S., and Chalmers, R. (1999) Deconvolution gas chromatography/mass spectrometry of urinary organic acids–potential for pattern recognition and automated identification of metabolic disorders. Rapid Commun. Mass Spectrom. 13, 279–284.

    Article  CAS  PubMed  Google Scholar 

  38. Nielsen, N.-P. V., Carstensen, J. M., and Smedsgaard, J. (1998) Aligning of single and multiple wavelength chromatographic profiles form chemometric data analysis using correlation optimized warping. J. Chromatogr. A 805, 17–35.

    Article  CAS  Google Scholar 

  39. Miller, J. N., and Miller, J. C. (2000) Statistics and Chemometrics for Analytical Chemistry, Prentice Hall, Harlow, England.

    Google Scholar 

  40. Hotellin, H. (1933) Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24, 417–441.

    Article  Google Scholar 

  41. Raamsdonk, L., Teusink, B., Broadhurst, D., Zhang, N., Hayes, A., Walsh, M., Berden, J., Brindle, K., Kell, D., Rowland, J., Westerhoff, H., van Dam, K., and Oliver, S. (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat. Biotechnol. 19, 45–50.

    Article  CAS  PubMed  Google Scholar 

  42. Lachenbruch, P. A. (1975) Discriminant Analysis, Hafner Press, New York.

    Google Scholar 

  43. Cowan, J. D., and Sharp, D. H. (1988) Neural nets. Q. Rev. Biophys. 21, 365–427.

    Article  CAS  PubMed  Google Scholar 

  44. Cristianini, N., and Shawe-Taylor, J. (2000) An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods, Cambridge University Press, Cambridge.

    Google Scholar 

  45. Goldberg, D. E. (1989) Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, Mass.

    Google Scholar 

  46. Koza, J. R. (1992) Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press, Cambridge, Mass.

    Google Scholar 

  47. Goodacre, R., and Kell, D. B. (1996) Pyrolysis mass spectrometry and its applications in biotechnology. Curr. Opin. Biotechnol. 7, 20–28.

    Article  CAS  PubMed  Google Scholar 

  48. McGovern, A. C., Broadhurst, D., Taylor, J., Kaderbhai, N., Winson, M. K., Small, D. A., Rowland, J. J., Kell, D. B., and Goodacre, R. (2002) Monitoring of complex industrial bioprocesses for metabolite concentrations using modern spectroscopies and machine learning: application to gibberellic acid production. Biotechnol. Bioeng. 78, 527–538.

    Article  CAS  PubMed  Google Scholar 

  49. Shaw, A. D., Winson, M. K., Woodward, A. M., McGovern, A. C., Davey, H. M., Kaderbhai, N., Broadhurst, D., Gilbert, R. J., Taylor, J., Timmins, E. M., Goodacre, R., Kell, D. B., Alsberg, B. K., and Rowland, J. J. (2000) Rapid analysis of high-dimensional bioprocesses using multivariate spectroscopies and advanced chemometrics. Adv. Biochem. Eng. Biotechnol. 66, 83–113.

    CAS  PubMed  Google Scholar 

  50. Goodacre, R. (2005) Making sense of the metabolome using evolutionary computation: seeing the wood with the trees. J. Exp. Bot. 56, 245–254.

    Article  CAS  PubMed  Google Scholar 

  51. Thimm, O., Blasing, O., Gibon, Y., Nagel, A., Meyer, S., Kruger, P., Selbig, J., Muller, L., Rhee, S., and Stitt, M. (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37, 914–939.

    Article  CAS  PubMed  Google Scholar 

  52. Usadel, B., Nagel, A., Thimm, O., Redestig, H., Blaesing, O. E., Palacios-Rojas, N., Selbig, J., Hannemann, J., Piques, M. C., Steinhauser, D., Scheible, W.-R., Gibon, Y., Morcuende, R., Weicht, D., Meyer, S., and Stitt, M. (2005) Extension of the visualization tool mapman to allow statistical analysis of arrays, display of coresponding genes, and comparison with known responses. Plant Physiol. 138, 1195–1204.

    Article  CAS  PubMed  Google Scholar 

  53. Urbanczyk-Wochniak, E., Usadel, B., Thimm, O., Nunes-Nesi, A., Carrari, F., Davey, M., Blasing, O., Kowalczyk, M., Weicht, D., Polinceusz, A., Meyer, S., Stitt, M., and Fernie, A. R. (2006) Conversion of MapMan to allow the analysis of transcript data from Solanaceous species: effects of genetic and environmental alterations in energy metabolism in the leaf. Plant Mol. Biol. 60, 773–792.

    Article  CAS  PubMed  Google Scholar 

  54. Mehrotra, B., and Mendes, P. (2006) Bioinformatics approaches to integrate metabolomics and other systems biology data, in Biotechnology in Agriculture and Forestry: Plant Metabolomics (Saito, K., Dixon, R.A., Willmitzer, L., Ed.), Springer-Verlag, Berlin, Vol. 57, pp. 105–115.

    Google Scholar 

  55. Gonzales, M. D., Arcchuleta, E., Farmer, A., Gajendran, K., Gant, D., Shoemaker, R., Beavis, W. D., and Waugh, M. E. (2005) The Legume Information System (LIS): an integrated information resource for comparative legume biology. Nucleic Acids Res. 33, D660–D665.

    Article  CAS  PubMed  Google Scholar 

  56. Lange, B., and Ghassemian, M. (2005) Comprehensive post-genomic data analysis approaches integrating biochemical pathway maps. Phytochemistry 66, 413–451.

    Article  CAS  PubMed  Google Scholar 

  57. Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., Aach, J., Ansorge, W., Ball, C. A., Causton, H. C., Gaasterland, T., Glenisson, P., Holstege, F. C. P., Kim, I. F., Markowitz, V., Matese, J. C., Parkinson, H., Robinson, A., Sarkans, U., Schulze-Kremer, S., Stewart, J., Taylor, R., Vilo, J., and Vingron, M. (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat. Genet. 29, 365–371.

    Article  CAS  PubMed  Google Scholar 

  58. Taylor, C. F., Paton, N. W., Garwood, K. L., Kirby, P. D., Stead, D. A., Yin, Z., Deutsch, E. W., Selway, L., Walker, J., Riba-Garcia, I., Mohammed, S., Deery, M. J., Howard, J. A., Dunkley, T., Aebersold, R., Kell, D. B., Lilley, K. S., Roepstorff, P., Yates, J. R., Brass, A., Brown, A. J. P., Cash, P., Gaskell, S. J., Hubbard, S. J., and Oliver, S. G. (2003) A systematic approach to modeling, capturing, and disseminating proteomics experimental data. Nat. Biotechnol. 21, 247–254.

    Article  CAS  PubMed  Google Scholar 

  59. Orchard, S., Hermjakob, H., and Apweiler, R. (2003) The proteomics standards initiative. Proteomics 3, 1374–1376.

    Article  CAS  PubMed  Google Scholar 

  60. Orchard, S., Hermjakob, H., Taylor, C., Potthast, F., Jones, P., Zhu, W., Julian, R., and Apweiler, R. (2005) Further steps in standardisation. Report of the second annual Proteomics Standards Initiative Spring Workshop (Siena, Italy 17–20 April 2005). Proteomics 5, 3552–3555.

    Article  CAS  PubMed  Google Scholar 

  61. Orchard, S., Hermjakob, H., Binz, P., Hoogland, C., Taylor, C., Zhu, W., Julian, R., and Apweiler, R. (2005) Further steps towards data standardisation: the Proteomic Standards Initiative HUPO 3(rd) annual congress, Beijing 25–27(th) October, 2004. Proteomics 5, 337–339.

    Article  CAS  PubMed  Google Scholar 

  62. Bino, R. J., Hall, R. D., Fiehn, O., Kopka, J., Saito, K., Draper, J., Nikolau, B. J., Mendes, P., Roessner-Tunali, U., Beale, M. H., Trethewey, R. N., Lange, B. M., Wurtele, E. S., and Sumner, L. W. (2004) Potential of metabolomics as a functional genomics tool. Trends Plant Sci. 9, 418–425.

    Article  CAS  PubMed  Google Scholar 

  63. Jenkins, H., Hardy, N., Beckmann, M., Draper, J., Smith, A., Taylor, J., Fiehn, O., Goodacre, R., Bino, R., Hall, R., Kopka, J., Lane, G., Lange, B., Liu, J., Mendes, P., Nikolau, B., Oliver, S., Paton, N., Rhee, S., Roessner-Tunali, U., Saito, K., Smedsgaard, J., Sumner, L., Wang, T., Walsh, S., Wurtele, E., and Kell, D. (2004) A proposed framework for the description of plant metabolomics experiments and their results. Nat. Biotechnol. 22, 1601–1606.

    Article  CAS  PubMed  Google Scholar 

  64. Jenkins, H., Johnson, H., Kular, B., Wang, T., and Hardy, N. (2005) Toward supportive data collection tools for plant metabolomics. Plant Physiol. 138, 67–77.

    Article  CAS  PubMed  Google Scholar 

  65. Lindon, J., Nicholson, J., Holmes, E., Keun, H., Craig, A., Pearce, J., Bruce, S., Hardy, N., Sansone, S., Antti, H., Jonsson, P., Daykin, C., Navarange, M., Beger, R., Verheij, E., Amberg, A., Baunsgaard, D., Cantor, G., Lehman-McKeeman, L., Earll, M., Wold, S., Johansson, E., Haselden, J., Kramer, K., Thomas, C., Lindberg, J., Schuppe-Koistinen, I., Wilson, I., Reily, M., Robertson, D., Senn, H., Krotzky, A., Kochhar, S., Powell, J., van der Ouderaa, F., Plumb, R., Schaefer, H., Spraul, M., and (2005) Summary recommendations for standardization and reporting of metabolic analyses. Nat. Biotechnol. 23, 833–838.

    Article  CAS  PubMed  Google Scholar 

  66. Fiehn, O., Kristal, B., van Ommen, B., Sumner, L. W., Assuant-Sansone, S., Taylor, C., Hardy, N., and Kaddurah-Daouk, R. (2006) Establishing Reporting Standards for Metabolomic and Metabonomic Studies: A Call for Participation. Omics 10, 158–163.

    Article  CAS  PubMed  Google Scholar 

  67. Ball, C. A., Awad, I. A. B., Demeter, J., Gollub, J., Hebert, J. M., Hernandez-Boussard, T., Jin, H., Matese, J. C., Nitzberg, M., Wymore, F., Zachariah, Z. K., Brown, P. O., and Sherlock, G. (2005) The Stanford microarray database accommodates additional microarray platforms and data formats. Nucleic Acids Res. 33, D580–D582.

    Article  CAS  PubMed  Google Scholar 

  68. Barrett, T., Suzek, T. O., Troup, D. B., Wilhite, S. E., Ngau, W.-C., Ledoux, P., Rudnev, D., Lash, A. E., Fujibuchi, W., and Edgar, R. (2005) NCBI GEO: mining millions of expression profiles–database and tools. Nucleic Acids Res. 33, D562–D566.

    Article  CAS  PubMed  Google Scholar 

  69. Bairoch, A., Apweiler, R., Wu, C. H., Barker, W. C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M. J., Natale, D. A., O’Donovan, C., Redaschi, N., and Yeh, L.-S. L. (2005) The Universal Protein Resource (UniProt). Nucleic Acids Res. 33, D154–D159.

    Article  CAS  PubMed  Google Scholar 

  70. Schauer, N., Steinhauser, D., Strelkov, S., Schomburg, D., Allison, G., Moritz, T., Lundgren, K., Roessner-Tunali, U., Forbes, M., Willmitzer, L., Fernie, A., and Kopka, J. (2005) GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett. 579, 1332–1337.

    Article  CAS  PubMed  Google Scholar 

  71. Fiehn, O., Wohlgemuth, G., Scholz, G. (2005) Setup and Annotation of Metabolomic Experiment by Intergrating Biological and Mass Spectrometric Metadata. In B. Ludascher, L. Raschid, eds, LNBI, Vol 3615. Springer-Verlag, Berlin, Germany, pp. 224–239.

    Google Scholar 

  72. Tikunov, Y., Lommen, A., de Vos, C. H. R, Verhoeven, H. A., Bino, R. J., Hall, R. D., Bovy, A. G. (2005) A Novel Approach for Nontargeted Data Analysis for Metabolomics. Large-Scale Profiling of Tomato Fruit Volatiles. Plant Physiol. 139, 1125–1137.

    Article  CAS  PubMed  Google Scholar 

  73. Broeckling, C., Reddy, I., Duran, A., Zhao, X., Sumner, L. (2006) MET-IDEA: Data Extraction Tool for Mass Spectrometry-Based Metabolomics. Anal. Chem. 78, 4334–4341.

    Article  CAS  PubMed  Google Scholar 

  74. Katajamaa, M., Miettinen, J., Oresic, M. (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22, 634–636.

    Article  CAS  PubMed  Google Scholar 

  75. Mueller, L. A., Zhang, P., Rhee, S. Y. (2003) AraCyc: A Biochemical Pathway Database for Arabidopsis. Plant Physiology 132: 453–460.

    Article  CAS  PubMed  Google Scholar 

  76. Tokimatsu, T., Sakurai, N., Suzuki, H., Ohta, H., Nishitani, K., Koyama, T., Umezawa, T., Misawa, N., Saito, K., Shibata, D. (2005) KaPPA-View. A Web-Baseed Analysis Tool for Integration of Transcript and Metabolite Data on Plant Metabolic Pathway Maps. Plant Physiology 138: 1289–1300.

    Article  CAS  PubMed  Google Scholar 

  77. Bajic, V. B., Veronika, M., Veladandi, P. S., Meka, A., Heng, M.-W., Rajaraman, K., Pan H., Swarup, S. (2005) Dragon Plant Biology Explorer. A Text-Mining Tool for Integrating Associations between Genetic and Biochemical Entities with Genome Annotation and Biochemical Terms Lists. Plant Physiology 138: 1914–1925.

    Article  CAS  PubMed  Google Scholar 

  78. Yang, Y., Engin, L., Wurtele, E. S., Cruz-Neira, C., Dickerson, J. A. (2005) Integration of metabolic networks and gene expression in virtual reality. Bioinformatics 21, 3645–3650.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The Sumner lab is supported by The National Science Foundation Plant Genome Research Program Award no. DBI-0109732, NSF 2010 MCB-0520283, NSF 2010 MCB-0520140, State of Oklahoma, and The Samuel Roberts Noble Foundation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Sumner, L.W., Urbanczyk-Wochniak, E., Broeckling, C.D. (2005). Metabolomics Data Analysis, Visualization, and Integration. In: Edwards, D. (eds) Plant Bioinformatics. Methods in Molecular Biology™, vol 406. Humana Press. https://doi.org/10.1007/978-1-59745-535-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-535-0_20

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-653-5

  • Online ISBN: 978-1-59745-535-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics