Skip to main content

Detection of Bidirectional Promoter-Derived lncRNAs from Small-Scale Samples Using Pre-Amplification-Free Directional RNA-seq Method

  • Protocol
  • First Online:
Zygotic Genome Activation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1605))

Abstract

Development of high-throughput sequencing technologies has uncovered the immensity of the long noncoding RNA (lncRNA) world. Divergently transcribed lncRNAs from bidirectional gene promoters, called promoter-associated noncoding RNAs (pancRNAs), account for ~20% of the total number of lncRNAs, and this major fraction is involved in many biological processes, such as development and cancer formation. Recently, we have found that the pancRNAs activate their partner genes, as represented by the fact that pancIl17d, a pancRNA that is transcribed from the antisense strand of the promoter region of Interleukin 17d (Il17d) at the onset of zygotic gene activation (ZGA), is essential for mouse preimplantation development through Il17d upregulation. The discovery of the expression of a specific set of pancRNAs during ZGA was achieved by using a method that generates directional RNA-seq libraries from small-scale samples. Although there are several methods available for small-scale samples, most of them require a pre-amplification procedure that frequently generates some amplification biases toward a subset of transcripts. We provide here a highly sensitive and reproducible method based on the preparation of directional RNA-seq libraries from as little as 100 mouse oocytes or embryos without pre-amplification for the quantification of lncRNAs as well as mRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aoki F, Worrad DM, Schultz RM (1997) Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev Biol 181:296–307

    Article  CAS  PubMed  Google Scholar 

  2. Latham KE, Garrels JI, Chang C et al (1991) Quantitative analysis of protein synthesis in mouse embryos. I. Extensive reprogramming at the one-and two-cell stages. Development 112:921–932

    CAS  PubMed  Google Scholar 

  3. Hamatani T, Carter MG, Sharov AA et al (2004) Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 6:117–131

    Article  CAS  PubMed  Google Scholar 

  4. Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15:7–21

    Article  CAS  PubMed  Google Scholar 

  5. Derrien T, Johnson R, Bussotti G et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Uesaka M, Nishimura O, Go Y et al (2014) Bidirectional promoters are the major source of gene activation-associated non-coding RNAs in mammals. BMC Genomics 15:35

    Article  PubMed  PubMed Central  Google Scholar 

  7. Luo S, Lu JY, Liu L et al (2016) Divergent lncRNAs regulate gene expression and lineage differentiation in pluripotent cells. Cell Stem Cell 18(5):637–652

    Article  CAS  PubMed  Google Scholar 

  8. Yamamoto N, Agata K, Nakashima K et al (2016) Bidirectional promoters link cAMP signaling with irreversible differentiation through promoter-associated non-coding RNA (pancRNA) expression in PC12 cells. Nucleic Acids Res 44(11):5105–5122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tomikawa J, Shimokawa H, Uesaka M et al (2011) Single-stranded noncoding RNAs mediate local epigenetic alterations at gene promoters in rat cell lines. J Biol Chem 286:34788–34799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Imamura T, Yamamoto S, Ohgane J et al (2004) Non-coding RNA directed DNA demethylation of Sphk1 CpG island. Biochem Biophys Res Commun 322:593–600

    Article  CAS  PubMed  Google Scholar 

  11. Hamazaki N, Uesaka M, Nakashima K et al (2015) Gene activation-associated long noncoding RNAs function in mouse preimplantation development. Development 142:910–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li S, Dong X, Su Z (2013) Directional RNA-seq reveals highly complex condition-dependent transcriptomes in E. coli K12 through accurate full-length transcripts assembling. BMC Genomics 14:520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Borodina T, Adjaye J, Sultan M (2011) A strand-specific library preparation protocol for RNA sequencing. Methods Enzymol 500:79–98

    Article  CAS  PubMed  Google Scholar 

  14. Park S-J, Komata M, Inoue F et al (2013) Inferring the choreography of parental genomes during fertilization from ultralarge-scale whole-transcriptome analysis. Genes Dev 27:2736–2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Picelli S, Björklund ÅK, Faridani OR et al (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 10:1096–1098

    Article  CAS  PubMed  Google Scholar 

  16. Sasagawa Y, Nikaido I, Hayashi T et al (2013) Quartz-Seq: a highly reproducible and sensitive single-cell RNA-Seq reveals non-genetic gene expression heterogeneity. Genome Biol 14:R31

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nakamura T, Yabuta Y, Okamoto I et al (2015) SC3-seq: a method for highly parallel and quantitative measurement of single-cell gene expression. Nucleic Acids Res 43:e60

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bhargava V, Head SR, Ordoukhanian P et al (2014) Technical variations in low-input RNA-seq methodologies. Sci Rep 4:3678

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang L, Wang S, Li W (2012) RSeQC: quality control of RNA-seq experiments. Bioinformatics 28:2184–2185

    Article  CAS  PubMed  Google Scholar 

  20. Trapnell C, Roberts A, Goff L et al (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  22. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Elizabeth Nakajima and Yui Hamazaki for proofreading this manuscript. This work was in part supported by Grants-in-Aid [No. 16K15054] to T.I. from the Japan Society for the Promotion of Science (JSPS) and a Grant-in-Aid [No. 221S0002] for Scientific Research on Innovative Areas “Genome Science” from the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Imamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Hamazaki, N., Nakashima, K., Hayashi, K., Imamura, T. (2017). Detection of Bidirectional Promoter-Derived lncRNAs from Small-Scale Samples Using Pre-Amplification-Free Directional RNA-seq Method. In: Lee, K. (eds) Zygotic Genome Activation. Methods in Molecular Biology, vol 1605. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6988-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6988-3_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6986-9

  • Online ISBN: 978-1-4939-6988-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics