Skip to main content

Visualization of Clathrin-Mediated Endocytosis During Semaphorin-Guided Axonal Growth

  • Protocol
  • First Online:
Semaphorin Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1493))

Abstract

Semaphorin3A (Sema3A) guides axonal growth during neuronal network development. Accumulating evidence indicates that Sema3A-induced growth cone collapse and repulsion involve endocytic membrane trafficking in the growth cone. It is now possible to visualize endocytic processes in living cells using total internal reflection fluorescence microscopy (TIRFM), a powerful tool for imaging dynamic subcellular events at the plasma membrane. In this chapter, we describe a method for TIRFM observation and analysis of clathrin-mediated endocytosis in growth cones of chicken dorsal root ganglion neurons that receive an extracellular concentration gradient of Sema3A in a culture medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luo Y, Raible D, Raper JA (1993) Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 75:217–227

    Article  CAS  PubMed  Google Scholar 

  2. Fan J, Mansfield SG, Redmond T et al (1993) The organization of F-actin and microtubules in growth cones exposed to a brain-derived collapsing factor. J Cell Biol 121:867–878

    Article  CAS  PubMed  Google Scholar 

  3. Fan J, Raper JA (1995) Localized collapsing cues can steer growth cones without inducing their full collapse. Neuron 14:263–274

    Article  CAS  PubMed  Google Scholar 

  4. Song H, Ming G, He Z et al (1998) Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281:1515–1518

    Article  CAS  PubMed  Google Scholar 

  5. Campbell DS, Regan AG, Lopez JS et al (2001) Semaphorin 3A elicits stage-dependent collapse, turning, and branching in Xenopus retinal growth cones. J Neurosci 21:8538–8547

    CAS  PubMed  Google Scholar 

  6. Tojima T, Itofusa R, Kamiguchi H (2010) Asymmetric clathrin-mediated endocytosis drives repulsive growth cone guidance. Neuron 66:370–377

    Article  CAS  PubMed  Google Scholar 

  7. Fournier AE, Nakamura F, Kawamoto S et al (2000) Semaphorin3A enhances endocytosis at sites of receptor-F-actin colocalization during growth cone collapse. J Cell Biol 149:411–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jurney WM, Gallo G, Letourneau PC et al (2002) Rac1-mediated endocytosis during ephrin-A2- and semaphorin 3A-induced growth cone collapse. J Neurosci 22:6019–6028

    CAS  PubMed  Google Scholar 

  9. Piper M, Salih S, Weinl C et al (2005) Endocytosis-dependent desensitization and protein synthesis-dependent resensitization in retinal growth cone adaptation. Nat Neurosci 8:179–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kabayama H, Nakamura T, Takeuchi M et al (2009) Ca2+ induces macropinocytosis via F-actin depolymerization during growth cone collapse. Mol Cell Neurosci 40:27–38

    Article  CAS  PubMed  Google Scholar 

  11. Carcea I, Ma'ayan A, Mesias R et al (2010) Flotillin-mediated endocytic events dictate cell type-specific responses to semaphorin 3A. J Neurosci 30:15317–15329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Toomre D, Manstein DJ (2001) Lighting up the cell surface with evanescent wave microscopy. Trends Cell Biol 11:298–303

    Article  CAS  PubMed  Google Scholar 

  13. Millis BA (2012) Evanescent-wave field imaging: an introduction to total internal reflection fluorescence microscopy. Methods Mol Biol 823:295–309

    Article  CAS  PubMed  Google Scholar 

  14. Toomre D (2012) Cellular imaging using total internal reflection fluorescence microscopy: theory and instrumentation. Cold Spring Harb Protoc 2012:414–424

    PubMed  Google Scholar 

  15. Merrifield CJ, Feldman ME, Wan L et al (2002) Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat Cell Biol 4:691–698

    Article  CAS  PubMed  Google Scholar 

  16. Merrifield CJ, Perrais D, Zenisek D (2005) Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell 121:593–606

    Article  CAS  PubMed  Google Scholar 

  17. Rappoport JZ, Simon SM (2003) Real-time analysis of clathrin-mediated endocytosis during cell migration. J Cell Sci 116:847–855

    Article  CAS  PubMed  Google Scholar 

  18. Rappoport JZ, Simon SM, Benmerah A (2004) Understanding living clathrin-coated pits. Traffic 5:327–337

    Article  CAS  PubMed  Google Scholar 

  19. Gaidarov I, Santini F, Warren RA et al (1999) Spatial control of coated-pit dynamics in living cells. Nat Cell Biol 1:1–7

    Article  CAS  PubMed  Google Scholar 

  20. Shaner NC, Campbell RE, Steinbach PA et al (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572

    Article  CAS  PubMed  Google Scholar 

  21. Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Article  CAS  PubMed  Google Scholar 

  22. Kamiguchi H, Yoshihara F (2001) The role of endocytic L1 trafficking in polarized adhesion and migration of nerve growth cones. J Neurosci 21:9194–9203

    CAS  PubMed  Google Scholar 

  23. He Y, Baas PW (2003) Growing and working with peripheral neurons. Methods Cell Biol 71:17–35

    Article  PubMed  Google Scholar 

  24. Toomre D (2012) Generating live cell data using total internal reflection fluorescence microscopy. Cold Spring Harb Protoc 2012:439–446

    PubMed  Google Scholar 

  25. Toomre D (2012) Alignment and calibration of total internal reflection fluorescence microscopy systems. Cold Spring Harb Protoc 2012:504–509

    PubMed  Google Scholar 

  26. Zheng JQ, Felder M, Connor JA et al (1994) Turning of nerve growth cones induced by neurotransmitters. Nature 368:140–144

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to H. Akiyama and A.T. Guy for helpful comments on this manuscript. We also thank J.H. Keen and R.Y. Tsien for providing plasmid constructs, and RIKEN BSI Research Resources Center for DNA sequencing. This work was partially funded by the Japan Science and Technology Agency PRESTO program (T.T.) and Grants-in-Aid for Scientific Research on Innovative Areas (23110005, T.T.), Scientific Research (C) (24500393, T.T.), and Young Scientists (B) (22700353, T.T.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Kamiguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Itofusa, R., Tojima, T., Kamiguchi, H. (2017). Visualization of Clathrin-Mediated Endocytosis During Semaphorin-Guided Axonal Growth. In: Terman, J. (eds) Semaphorin Signaling. Methods in Molecular Biology, vol 1493. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6448-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6448-2_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6446-8

  • Online ISBN: 978-1-4939-6448-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics