Skip to main content

Stellaris® RNA Fluorescence In Situ Hybridization for the Simultaneous Detection of Immature and Mature Long Noncoding RNAs in Adherent Cells

  • Protocol
  • First Online:
Long Non-Coding RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1402))

Abstract

RNA fluorescence in situ hybridization (FISH), long an indispensable tool for the detection and localization of RNA, is becoming an increasingly important complement to other gene expression analysis methods. Especially important for long noncoding RNAs (lncRNAs), RNA FISH adds the ability to distinguish between primary and mature lncRNA transcripts and thus to segregate the site of synthesis from the site of action.

We detail a streamlined RNA FISH protocol for the simultaneous imaging of multiple primary and mature mRNA and lncRNA gene products and RNA variants in fixed mammalian cells. The technique makes use of fluorescently pre-labeled, short DNA oligonucleotides (circa 20 nucleotides in length), pooled into sets of up to 48 individual probes. The overall binding of multiple oligonucleotides to the same RNA target results in fluorescent signals that reveal clusters of RNAs or single RNA molecules as punctate spots without the need for enzymatic signal amplification. Visualization of these punctate signals, through the use of wide-field fluorescence microscopy, enables the counting of single transcripts down to one copy per cell. Additionally, by using probe sets with spectrally distinct fluorophores, multiplex analysis of gene-specific RNAs, or RNA variants, can be achieved. The presented examples illustrate how this method can add temporospatial information between the transcription event and both the location and the endurance of the mature lncRNA. We also briefly discuss post-processing of images and spot counting to demonstrate the capabilities of this method for the statistical analysis of RNA molecules per cell. This information can be utilized to determine both overall gene expression levels and cell-to-cell gene expression variation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74. doi:10.1038/nature11247

    Article  Google Scholar 

  2. Rinn J, Guttman M (2014) RNA function. RNA and dynamic nuclear organization. Science 345:1240–1241. doi:10.1126/science.1252966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maamar H, Cabili MN, Rinn J et al (2013) linc-HOXA1 is a noncoding RNA that represses Hoxa1 transcription in cis. Genes Dev 27:1260–1271. doi:10.1101/gad.217018.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166. doi:10.1146/annurev-biochem-051410-092902

    Article  CAS  PubMed  Google Scholar 

  5. Clark MB, Choudhary A, Smith MA et al (2013) The dark matter rises: the expanding world of regulatory RNAs. Essays Biochem 54:1–16. doi:10.1042/bse0540001

    Article  CAS  PubMed  Google Scholar 

  6. Tilgner H, Knowles DG, Johnson R et al (2012) Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res 22:1616–1625. doi:10.1101/gr.134445.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brown JM, Buckle VJ (2010) Detection of nascent RNA transcripts by fluorescence in situ hybridization. Methods Mol Biol 659:33–50. doi:10.1007/978-1-60761-789-1_3

    Article  CAS  PubMed  Google Scholar 

  8. Coassin SR, Orjalo AV Jr, Semaan SJ et al (2014) Simultaneous detection of nuclear and cytoplasmic RNA variants utilizing Stellaris® RNA fluorescence in situ hybridization in adherent cells. Methods Mol Biol 1211:189–199. doi:10.1007/978-1-4939-1459-3_15

    Article  CAS  PubMed  Google Scholar 

  9. Orjalo AV Jr, Johansson HE, Ruth JR (2011) Stellaris™ fluorescence in situ hybridization (FISH) probes: a powerful tool for mRNA detection. Nat Methods 8:I–III. doi:10.1038/nmeth.f.349

    Google Scholar 

  10. Levesque MJ, Ginart P, Wei Y et al (2013) Visualizing SNVs to quantify allele-specific expression in single cells. Nat Methods 10:865–867. doi:10.1038/nmeth.2589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shaffer SM, Wu MT, Levesque MJ et al (2013) Turbo FISH: a method for rapid single molecule RNA FISH. PLoS One 8:e75120. doi:10.1371/journal.pone.0075120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tripathi V, Fei J, Ha T et al (2015) RNA fluorescence in situ hybridization in cultured mammalian cells. Methods Mol Biol 1206:123–136. doi:10.1007/978-1-4939-1369-5_11

    Article  CAS  PubMed  Google Scholar 

  13. Levesque MJ, Raj A (2013) Single-chromosome transcriptional profiling reveals chromosomal gene expression regulation. Nat Methods 10:246–248. doi:10.1038/nmeth.2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gribnau J, de Boer E, Trimborn T et al (1998) Chromatin interaction mechanism of transcriptional control in vivo. EMBO J 17:6020–6027. doi:10.1093/emboj/17.20.6020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fanucchi S, Shibayama Y, Burd S et al (2013) Chromosomal contact permits transcription between coregulated genes. Cell 155:606–620. doi:10.1016/j.cell.2013.09.051

    Article  CAS  PubMed  Google Scholar 

  16. Hacisuleyman E, Goff LA, Trapnell C et al (2014) Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat Struct Mol Biol 21:198–206. doi:10.1038/nsmb.2764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Papantonis A, Cook PR (2013) Transcription factories: genome organization and gene regulation. Chem Rev 113:8683–8705. doi:10.1021/cr300513p

    Article  CAS  PubMed  Google Scholar 

  18. Senecal A, Munsky B, Proux F et al (2014) Transcription factors modulate c-Fos transcription bursts. Cell Rep 8:1–9. doi:10.1016/j.celrep.2014.05.053

    Article  Google Scholar 

  19. Rachmilewitz J, Goshen R, Ariel I et al (1991) Parental imprinting of the human H19 gene. FEBS Lett 309:25–28. doi:10.1016/0014-5793(92)80731-U

    Article  Google Scholar 

  20. Ohno M, Aoki N, Sasaki H (2001) Allele-specific detection of nascent transcripts by fluorescence in situ hybridization reveals temporal and culture induced changes in Igf2 imprinting during pre-implantation mouse development. Genes Cells 6:249–259. doi:10.1046/j.1365-2443.2001.00417.x

    Article  CAS  PubMed  Google Scholar 

  21. Yiddish A, Forkey JN, McKinney SA et al (2003) Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization. Science 300:2061–2065. doi:10.1126/science.1084398

    Article  Google Scholar 

  22. Derti A, Garrett-Engele P, Macisaac KD et al (2012) A quantitative atlas of polyadenylation in five mammals. Genome Res 22:1173–1183. doi:10.1101/gr.132563.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hoque M, Ji Z, Zheng D et al (2013) Analysis of alternative cleavage and polyadenylation by 3′ region extraction and deep sequencing. Nat Methods 10:133–139. doi:10.1038/nmeth.2288

    Article  CAS  PubMed  Google Scholar 

  24. Zhang S, Han J, Zhong D et al (2014) Genome-wide identification and predictive modeling of lincRNAs polyadenylation in cancer genome. Comput Biol Chem 52:1–8. doi:10.1016/j.compbiolchem.2014.07.001

    Article  PubMed  Google Scholar 

  25. Wiles JE, Freer SM, Spector DL (2008) 3′ End processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 135:919–932. doi:10.1016/j.cell.2008.10.012

    Article  Google Scholar 

  26. Pachnis V, Belayew A, Tilghman SM (1984) Locus unlinked to alpha-fetoprotein under the control of the murine raf and Rif genes. Proc Natl Acad Sci USA 81:5523–5527, www.pnas.org/content/81/17/5523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barsyte-Lovejoy D, Lau SK, Boutros PC et al (2006) The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Cancer Res 66:5330–5337. doi:10.1158/0008-5472.CAN-06-0037

    Article  CAS  PubMed  Google Scholar 

  28. Huppi K, Pitt JJ, Wahlberg BM et al (2012) The 8q24 gene desert: an oasis of non-coding transcriptional activity. Front Genet 3:69. doi:10.3389/fgene.2012.00069

    Article  PubMed  PubMed Central  Google Scholar 

  29. Johnsson P, Morris KV (2014) Expanding the functional role of long noncoding RNAs. Cell Res 24:1284–1285. doi:10.1038/cr.2014.104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tseng YY, Moriarity BS, Gong W et al (2014) PVT1 dependence in cancer with MYC copy-number increase. Nature 512:82–86. doi:10.1038/nature13311

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Clemson CM, McNeil JA, Willard HF et al (1996) XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol 132:259–275. doi:10.1083/jcb.132.3.259

    Article  CAS  PubMed  Google Scholar 

  32. Byron M, Hall LL, Lawrence JB (2013) A multifaceted FISH approach to study endogenous RNAs and DNAs in native nuclear and cell structures Curr Prot Hum Genet 4.15.1–4.15.21. doi: 10.1002/0471142905.hg0415s76

    Google Scholar 

  33. Davis JM (ed) (2002) Basic cell culture. Oxford University Press, New York

    Google Scholar 

  34. Peng KJ, Wang JH, Su WT et al (2010) Characterization of two human lung adenocarcinoma cell lines by reciprocal chromosome painting. Zool Res 31:113–121. doi:10.3724/SP.J.1141.2010.02113

    Article  PubMed  Google Scholar 

  35. Fogh J, Fogh JM, Orfeo T (1977) One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst 59:221–226. doi:10.1093/jnci/59.1.221

    Article  CAS  PubMed  Google Scholar 

  36. Yan F, Wu X, Crawford M et al (2010) The search for an optimal DNA, RNA, and protein detection by in situ hybridization, immunohistochemistry, and solution-based methods. Methods 52:281–286. doi:10.1016/j.ymeth.2010.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brannan CI, Dees EC, Ingram RS, Tilghman SM (1990) The product of the H19 gene may function as an RNA. Mol Cell Biol 10:28–36. doi:10.1128/MCB.10.1.28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the continual support of Dr. Ron Cook and members of the Stellaris team at LGC Biosearch Technologies.

For research use only. Not for use in diagnostic procedures. Stellaris® is a trademark of LGC Biosearch Technologies. Products and technologies appearing in this application note may have trademark or patent restrictions associated with them. Please see http://www.biosearchtech.com/legal for a full legal disclosure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans E. Johansson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Orjalo, A.V., Johansson, H.E. (2016). Stellaris® RNA Fluorescence In Situ Hybridization for the Simultaneous Detection of Immature and Mature Long Noncoding RNAs in Adherent Cells. In: Feng, Y., Zhang, L. (eds) Long Non-Coding RNAs. Methods in Molecular Biology, vol 1402. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3378-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3378-5_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3376-1

  • Online ISBN: 978-1-4939-3378-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics