Skip to main content

Computational Identification of Protein Kinases and Kinase-Specific Substrates in Plants

  • Protocol
Plant Phosphoproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1306))

Abstract

The protein phosphorylation catalyzed by protein kinases (PKs) plays an essential role in almost all biological progresses in plants. Thus, the identification of PKs and kinase-specific substrates is fundamental for understanding the regulatory mechanisms of protein phosphorylation especially in controlling plant growth and development. In this chapter, we describe the computational methods and protocols for the identification of PKs and kinase-specific substrates in plants, by using Vitis vinifera as an example. First, the proteome sequences and experimentally identified phosphorylation sites (p-sites) in Vitis vinifera were downloaded. The potential PKs were computationally identified based on preconstructed Hidden Markov Model (HMM) profiles and ortholog searches, whereas the kinase-specific p-sites, or site-specific kinase–substrate relations (ssKSRs) were initially predicted by the software package of Group-based Prediction System (GPS) and further processed by the iGPS algorithm (in vivo GPS) to filter potentially false positive hits. All primary data sets and prediction results of Vitis vinifera are available at: http://ekpd.biocuckoo.org/protocol.php.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127(3):635–648. doi:10.1016/j.cell.2006.09.026

    Article  CAS  PubMed  Google Scholar 

  2. Meng X, Xu J, He Y, Yang KY, Mordorski B, Liu Y, Zhang S (2013) Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance. Plant Cell 25(3):1126–1142. doi:10.1105/tpc.112.109074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. De Verdier CH (1952) Isolation of phosphothreonine from bovine casein. Nature 170(4332):804–805

    Article  Google Scholar 

  4. Levene PA, Alsberg CL (1906) The cleavage products of vitellin. J Biol Chem 2:127–133

    Google Scholar 

  5. Lipmann FA, Levene PA (1932) Prokaryotic elongation factor Tu is phosphorylated in vivo. J Biol Chem 98:109–114

    CAS  Google Scholar 

  6. Sutherland EW Jr, Wosilait WD (1955) Inactivation and activation of liver phosphorylase. Nature 175(4447):169–170

    Article  CAS  PubMed  Google Scholar 

  7. Fischer EH, Krebs EG (1955) Conversion of phosphorylase b to phosphorylase a in muscle extracts. J Biol Chem 216(1):121–132

    CAS  PubMed  Google Scholar 

  8. Hanks SK, Hunter T (1995) Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB Journal 9(8):576–596

    CAS  PubMed  Google Scholar 

  9. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934. doi:10.1126/science.1075762

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y, Liu Z, Cheng H, Gao T, Pan Z, Yang Q, Guo A, Xue Y (2014) EKPD: a hierarchical database of eukaryotic protein kinases and protein phosphatases. Nucleic Acids Res 42(1):D496–D502. doi:10.1093/nar/gkt1121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Nuhse TS, Stensballe A, Jensen ON, Peck SC (2003) Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol Cell Proteomics 2(11):1234–1243. doi:10.1074/mcp.T300006-MCP200

    Article  PubMed  Google Scholar 

  12. Zhou FF, Xue Y, Chen GL, Yao X (2004) GPS: a novel group-based phosphorylation predicting and scoring method. Biochem Biophys Res Commun 325(4):1443–1448. doi:10.1016/j.bbrc.2004.11.001

    Article  CAS  PubMed  Google Scholar 

  13. Xue Y, Zhou F, Zhu M, Ahmed K, Chen G, Yao X (2005) GPS: a comprehensive www server for phosphorylation sites prediction. Nucleic Acids Res 33(Web Server issue):W184–W187. doi:10.1093/nar/gki393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Xue Y, Ren J, Gao X, Jin C, Wen L, Yao X (2008) GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol Cell Proteomics 7(9):1598–1608. doi:10.1074/mcp.M700574-MCP200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Xue Y, Liu Z, Cao J, Ma Q, Gao X, Wang Q, Jin C, Zhou Y, Wen L, Ren J (2011) GPS 2.1: enhanced prediction of kinase-specific phosphorylation sites with an algorithm of motif length selection. Protein Eng Des Se 24(3):255–260. doi:10.1093/protein/gzq094

    Article  CAS  Google Scholar 

  16. Yu Xue ZL, Jun Cao, Jian Ren (2011) Computational prediction of post-translational modification sites in proteins. Systems and computational biology—molecular and cellular experimental systems, Ning-Sun Yang (Ed), ISBN: 978-953-307-280-7, InTech, DOI:105772/18559

    Google Scholar 

  17. Linding R, Jensen LJ, Pasculescu A, Olhovsky M, Colwill K, Bork P, Yaffe MB, Pawson T (2008) NetworKIN: a resource for exploring cellular phosphorylation networks. Nucleic Acids Res 36(Database issue):D695–D699. doi:10.1093/nar/gkm902

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Song C, Ye M, Liu Z, Cheng H, Jiang X, Han G, Songyang Z, Tan Y, Wang H, Ren J, Xue Y, Zou H (2012) Systematic analysis of protein phosphorylation networks from phosphoproteomic data. Mol Cell Proteomics 11(10):1070–1083. doi:10.1074/mcp.M111.012625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S, Fitzgerald S, Gil L, Garcia-Giron C, Gordon L, Hourlier T, Hunt S, Juettemann T, Kahari AK, Keenan S, Komorowska M, Kulesha E, Longden I, Maurel T, McLaren WM, Muffato M, Nag R, Overduin B, Pignatelli M, Pritchard B, Pritchard E, Riat HS, Ritchie GR, Ruffier M, Schuster M, Sheppard D, Sobral D, Taylor K, Thormann A, Trevanion S, White S, Wilder SP, Aken BL, Birney E, Cunningham F, Dunham I, Harrow J, Herrero J, Hubbard TJ, Johnson N, Kinsella R, Parker A, Spudich G, Yates A, Zadissa A, Searle SM (2013) Ensembl 2013. Nucleic Acids Res 41(Database issue):D48–D55. doi:10.1093/nar/gks1236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Yao Q, Ge H, Wu S, Zhang N, Chen W, Xu C, Gao J, Thelen JJ, Xu D (2014) P3DB 3.0: from plant phosphorylation sites to protein networks. Nucleic Acids Res 42(1):D1206–D1213. doi:10.1093/nar/gkt1135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen LJ (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41(Database issue):D808–D815. doi:10.1093/nar/gks1094

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. doi:10.1093/nar/gkh340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Eddy SR (2009) A new generation of homology search tools based on probabilistic inference. Genome Inform 23(1):205–211

    Article  PubMed  Google Scholar 

  24. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22(13):1658–1659. doi:10.1093/bioinformatics/btl158

    Article  CAS  PubMed  Google Scholar 

  25. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36(Web Server issue):W5–W9. doi:10.1093/nar/gkn201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. doi:10.1101/gr.1239303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278(5338):631–637

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by grants from the National Basic Research Program (973 project) (2013CB933900 and 2012CB910101), Natural Science Foundation of China (31171263, and 81272578), and International Science & Technology Cooperation Program of China (2014DFB30020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Xue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cheng, H., Wang, Y., Liu, Z., Xue, Y. (2015). Computational Identification of Protein Kinases and Kinase-Specific Substrates in Plants. In: Schulze, W. (eds) Plant Phosphoproteomics. Methods in Molecular Biology, vol 1306. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2648-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2648-0_15

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2647-3

  • Online ISBN: 978-1-4939-2648-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics