Skip to main content

Methods and Assays for Specific Targeting and Delivery of RNA Nanoparticles to Cancer Metastases

  • Protocol
RNA Nanotechnology and Therapeutics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1297))

Abstract

In recent years, RNA nanotechnology has become increasingly attractive due to its potential for applications in nanomedicine. RNA nanotechnology refers to the design and synthesis of nanoparticles composed mainly of RNA via bottom-up self-assembly. RNA nanoparticle is a suitable candidate for targeted delivery of therapeutics to cancer cells due to its multivalency, which allows the combination of therapeutic, targeting, and detection moieties all into one nanoparticle. To date, a system capable of exclusively targeting metastatic cancers that have spread to distant organs or lymph nodes is in demand. In this chapter, we report methods for establishing the clinically relevant colorectal cancer mouse metastasis models and describe methods and assays for constructing multifunctional, thermodynamically and chemically stable RNA nanoparticles that specifically target colorectal cancer metastases in the liver. Systemic injection of RNA nanoparticles showed metastatic cells targeting with little or no accumulation in normal liver parenchyma several hours after injection, demonstrating the therapeutic potential of these RNA nanoparticles as a delivery system for the treatment of cancer metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo P (2010) The emerging field of RNA nanotechnology. Nat Nanotechnol 5:833–842

    Article  CAS  Google Scholar 

  2. Guo P, Haque F, Hallahan B et al (2012) Uniqueness, advantages, challenges, solutions, and perspectives in therapeutics applying RNA nanotechnology. Nucleic Acid Ther 22:226–245

    CAS  Google Scholar 

  3. Shu Y, Pi F, Sharma A et al (2014) Stable RNA nanoparticles as potential new generation drugs for cancer therapy. Adv Drug Deliv Rev 66C:74–89

    Article  Google Scholar 

  4. Guo P, Haque F (eds) (2013) RNA Nanotechnology and Therapeutics. Press, CRC

    Google Scholar 

  5. Guo P, Zhang C, Chen C et al (1998) Inter-RNA interaction of phage phi29 pRNA to form a hexameric complex for viral DNA transportation. Mol Cell 2:149–155

    Article  CAS  Google Scholar 

  6. Shukla GC, Haque F, Tor Y et al (2011) A Boost for the Emerging Field of RNA Nanotechnology. ACS Nano 5:3405–3418

    Article  CAS  Google Scholar 

  7. Leontis N, Sweeney B, Haque F et al (2013) Conference Scene: Advances in RNA nanotechnology promise to transform medicine. Nanomedicine 8:1051–1054

    Article  CAS  Google Scholar 

  8. Kruger K, Grabowski PJ, Zaug AJ et al (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31:147–157

    Article  CAS  Google Scholar 

  9. Guerrier-Takada C, Gardiner K, Marsh T et al (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–857

    Article  CAS  Google Scholar 

  10. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    Article  CAS  Google Scholar 

  11. Carmichael GG (2002) Medicine: silencing viruses with RNA. Nature 418:379–380

    Article  CAS  Google Scholar 

  12. Winkler WC, Nahvi A, Roth A et al (2004) Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428:281–286

    Article  CAS  Google Scholar 

  13. Mulhbacher J, St-Pierre P, Lafontaine DA (2010) Therapeutic applications of ribozymes and riboswitches. Curr Opin Pharmacol 10:551–556

    Article  CAS  Google Scholar 

  14. Chen Y, Zhu X, Zhang X et al (2010) Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther 18:1650–1656

    Article  CAS  Google Scholar 

  15. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA et al (2010) Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A 107:6328–6333

    Article  CAS  Google Scholar 

  16. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  Google Scholar 

  17. Aagaard L, Rossi JJ (2007) RNAi therapeutics: Principles, prospects and challenges. Adv Drug Deliv Rev 59:75–86

    Article  CAS  Google Scholar 

  18. Cerchia L, de Franciscis V (2010) Targeting cancer cells with nucleic acid aptamers. Trends Biotechnol 28:517–525

    Article  CAS  Google Scholar 

  19. Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537–550

    Article  CAS  Google Scholar 

  20. Shu D, Shu Y, Haque F et al (2011) Thermodynamically stable RNA three-way junctions for constructing multifuntional nanoparticles for delivery of therapeutics. Nat Nanotechnol 6:658–667

    Article  CAS  Google Scholar 

  21. Haque F, Shu D, Shu Y et al (2012) Ultrastable synergistic tetravalent RNA nanoparticles for targeting to cancers. Nano Today 7:245–257

    Article  CAS  Google Scholar 

  22. Shu Y, Haque F, Shu D et al (2013) Fabrication of 14 Different RNA Nanoparticles for Specific Tumor Targeting without Accumulation in Normal Organs. RNA 19:766–777

    Article  Google Scholar 

  23. Shu Y, Shu D, Haque F et al (2013) Fabrication of pRNA nanoparticles to deliver therapeutic RNAs and bioactive compounds into tumor cells. Nat Protoc 8:1635–1659

    Article  CAS  Google Scholar 

  24. Liu J, Guo S, Cinier M et al (2010) Fabrication of stable and RNase-resistant RNA nanoparticles active in gearing the nanomotors for viral DNA packaging. ACS Nano 5:237–246

    Article  Google Scholar 

  25. Abdelmawla S, Guo S, Zhang L et al (2011) Pharmacological characterization of chemically synthesized monomeric pRNA nanoparticles for systemic delivery. Mol Ther 19:1312–1322

    Article  CAS  Google Scholar 

  26. Guo S, Huang F, Guo P (2006) Construction of folate-conjugated pRNA of bacteriophage phi29 DNA packaging motor for delivery of chimeric siRNA to nasopharyngeal carcinoma cells. Gene Ther 13:814–820

    Article  CAS  Google Scholar 

  27. Guo S, Tschammer N, Mohammed S et al (2005) Specific delivery of therapeutic RNAs to cancer cells via the dimerization mechanism of phi29 motor pRNA. Hum Gene Ther 16:1097–1109

    Article  CAS  Google Scholar 

  28. Shu D, Moll WD, Deng Z et al (2004) Bottom-up assembly of RNA arrays and superstructures as potential parts in nanotechnology. Nano Lett 4:1717–1723

    Article  CAS  Google Scholar 

  29. Khisamutdinov EF, Jasinski DL, Guo P (2014) RNA as a boiling-resistant anionic polymer material to build robust structures with defined shape and stoichiometry. ACS Nano 8:4771–4781

    Article  CAS  Google Scholar 

  30. Siegel R, Ma J, Zou Z et al (2014) Cancer statistics, 2014. CA Cancer J Clin 64:9–29

    Article  Google Scholar 

  31. Siegel R, Desantis C, Jemal A (2014) Colorectal cancer statistics, 2014. CA Cancer J Clin 64:104–117

    Article  Google Scholar 

  32. Wanebo HJ, Semoglou C, Attiyeh F et al (1978) Surgical management of patients with primary operable colorectal cancer and synchronous liver metastases. Am J Surg 135:81–85

    Article  CAS  Google Scholar 

  33. Yoon SS, Tanabe KK (1999) Surgical treatment and other regional treatments for colorectal cancer liver metastases. Oncologist 4:197–208

    CAS  Google Scholar 

  34. Rychahou P, Haque F, Shu Y et al (2015) Delivery of RNA nanoparticles into colorectal cancer metastases following systemic administration. ACS Nano 9:1108–1116

    Google Scholar 

  35. van Dam PA, Watson JV, Lowe DG et al (1990) Tissue preparation for simultaneous flow cytometric quantitation of tumour associated antigens and DNA in solid tumours. J Clin Pathol 43:833–839

    Article  Google Scholar 

  36. Ferreira-Facio CS, Milito C, Botafogo V et al (2013) Contribution of multiparameter flow cytometry immunophenotyping to the diagnostic screening and classification of pediatric cancer. PLoS One 8:e55534

    Article  CAS  Google Scholar 

  37. Sukhdeo K, Paramban RI, Vidal JG et al (2013) Multiplex flow cytometry barcoding and antibody arrays identify surface antigen profiles of primary and metastatic colon cancer cell lines. PLoS One 8:e53015

    Article  CAS  Google Scholar 

  38. Ricci-Vitiani L, Lombardi DG, Pilozzi E et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115

    Article  CAS  Google Scholar 

  39. Karlsson M, Nilsson O, Thorn M et al (2008) Detection of metastatic colon cancer cells in sentinel nodes by flow cytometry. J Immunol Methods 334:122–133

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by NIH grants R01 DK048498, P30 CA177558, and The Markey Cancer Foundation to B.M.E, as well as R01 EB003730 and U01 CA151648 to P.G. The content is solely the responsibility of the authors and does not necessarily represent the official views of NIH. Funding to Peixuan Guo’s Endowed Chair in Nanobiotechnology position is from the William Fairish Endowment Fund. P.G. is a cofounder of Kylin Therapeutics, Inc., RNA Nano, LLC., and Biomotor and Nucleic Acid Nanotechnology Development Corp., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mark Evers M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rychahou, P., Shu, Y., Haque, F., Hu, J., Guo, P., Evers, B.M. (2015). Methods and Assays for Specific Targeting and Delivery of RNA Nanoparticles to Cancer Metastases. In: Guo, P., Haque, F. (eds) RNA Nanotechnology and Therapeutics. Methods in Molecular Biology, vol 1297. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2562-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2562-9_9

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2561-2

  • Online ISBN: 978-1-4939-2562-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics