Skip to main content

Purification of Eukaryotic Exoribonucleases Following Heterologous Expression in Bacteria and Analysis of Their Biochemical Properties by In Vitro Enzymatic Assays

  • Protocol
  • First Online:
RNA Remodeling Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1259))

Abstract

Exoribonucleases—among the other RNases—play a crucial role in the regulation of different aspects of RNA metabolism in the eukaryotic cell. To fully understand the exact mechanism of activity exhibited by such enzymes, it is crucial to determine their detailed biochemical properties, notably their substrate specificity and optimal conditions for enzymatic action. One of the most significant features of exoribonucleases is the direction of degradation of RNA substrates, which can proceed either from 5′-end to 3′-end or in the opposite way. Here, we present methods allowing the efficient production and purification of eukaryotic exoribonucleases, the preparation and labeling of various RNA substrates, and the biochemical characterization of exonucleolytic activity. We also explain how the exonucleolytic activity may be distinguished from that of endonucleases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Houseley J, Tollervey D (2009) The many pathways of RNA degradation. Cell 136:763–776

    Article  CAS  PubMed  Google Scholar 

  2. Stoecklin G, Mühlemann O (2013) RNA decay mechanisms: specificity through diversity. Biochim Biophys Acta 1829:487–490

    Article  CAS  PubMed  Google Scholar 

  3. Tomecki R, Drazkowska K, Dziembowski A (2010) Mechanisms of RNA degradation by the eukaryotic exosome. Chembiochem 11:938–945

    Article  CAS  PubMed  Google Scholar 

  4. Tomecki R, Kristiansen MS, Lykke-Andersen S et al (2010) The human core exosome interacts with differentially localized processive RNases: hDIS3 and hDIS3L. EMBO J 29:2342–2357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Staals RH, Bronkhorst AW, Schilders G et al (2010) Dis3-like 1: a novel exoribonuclease associated with the human exosome. EMBO J 29:2358–2367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Lykke-Andersen S, Tomecki R, Jensen TH et al (2011) The eukaryotic RNA exosome: same scaffold but variable catalytic subunits. RNA Biol 8:61–66

    Article  CAS  PubMed  Google Scholar 

  7. Bonneau F, Basquin J, Ebert J et al (2009) The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation. Cell 139:547–559

    Article  CAS  PubMed  Google Scholar 

  8. Malet H, Topf M, Clare DK et al (2010) RNA channelling by the eukaryotic exosome. EMBO Rep 11:936–942

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Wasmuth EV, Lima CD (2012) Exo- and endoribonucleolytic activities of yeast cytoplasmic and nuclear RNA exosomes are dependent on the noncatalytic core and central channel. Mol Cell 48:133–144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Drazkowska K, Tomecki R, Stodus K et al (2013) The RNA exosome complex central channel controls both exonuclease and endonuclease Dis3 activities in vivo and in vitro. Nucleic Acids Res 41:3845–3858

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Liu Q, Greimann JC, Lima CD (2006) Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127:1223–1237

    Article  CAS  PubMed  Google Scholar 

  12. Dziembowski A, Lorentzen E, Conti E et al (2007) A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol 14:15–22

    Article  CAS  PubMed  Google Scholar 

  13. Lorentzen E, Basquin J, Tomecki R et al (2008) Structure of the active subunit of the yeast exosome core, Rrp44: diverse modes of substrate recruitment in the RNase II nuclease family. Mol Cell 29:717–728

    Article  CAS  PubMed  Google Scholar 

  14. Lebreton A, Tomecki R, Dziembowski A et al (2008) Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature 456:993–996

    Article  CAS  PubMed  Google Scholar 

  15. Schaeffer D, Tsanova B, Barbas A et al (2009) The exosome contains domains with specific endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities. Nat Struct Mol Biol 16:56–62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Schneider C, Leung E, Brown J et al (2009) The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome. Nucleic Acids Res 37:1127–1140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Nagarajan VK, Jones CI, Newbury SF et al (2013) XRN 5′→3′ exoribonucleases: structure, mechanisms and functions. Biochim Biophys Acta 1829:590–603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Jinek M, Coyle SM, Doudna JA (2011) Coupled 5′ nucleotide recognition and processivity in Xrn1-mediated mRNA decay. Mol Cell 41:600–608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Braun JE, Truffault V, Boland A et al (2012) A direct interaction between DCP1 and XRN1 couples mRNA decapping to 5′ exonucleolytic degradation. Nat Struct Mol Biol 19:1324–1331

    Article  CAS  PubMed  Google Scholar 

  20. Pellegrini O, Mathy N, Condon C et al (2008) In vitro assays of 5′ to 3′-exoribonuclease activity. Methods Enzymol 448:167–183

    Article  CAS  PubMed  Google Scholar 

  21. Tomecki R, Drazkowska K, Kucinski I et al (2014) Multiple myeloma-associated hDIS3 mutations cause perturbations in cellular RNA metabolism and suggest hDIS3 PIN domain as a potential drug target. Nucleic Acids Res 42:1270–1290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Clouet-d’Orval B, Rinaldi D, Quentin Y et al (2010) Euryarchaeal beta-CASP proteins with homology to bacterial RNase J have 5′- to 3′-exoribonuclease activity. J Biol Chem 285:17574–17583

    Article  PubMed Central  PubMed  Google Scholar 

  23. Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–234

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Centre within the grant allocated to RT on the basis of the decision number DEC-2011/01/D/NZ1/03510 and through a grant awarded to RT by the National Centre for Research and Development within the LIDER program (LIDER/35/46/L-3/11/NCBR/2012). RT was the recipient of a scholarship for outstanding young scientists from the Polish Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rafal Tomecki or Andrzej Dziembowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tomecki, R., Drazkowska, K., Krawczyk, A., Kowalska, K., Dziembowski, A. (2015). Purification of Eukaryotic Exoribonucleases Following Heterologous Expression in Bacteria and Analysis of Their Biochemical Properties by In Vitro Enzymatic Assays. In: Boudvillain, M. (eds) RNA Remodeling Proteins. Methods in Molecular Biology, vol 1259. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2214-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2214-7_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2213-0

  • Online ISBN: 978-1-4939-2214-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics