Skip to main content

Practical Methods for In Vivo Cortical Physiology with 2-Photon Microscopy and Bulk Loading of Fluorescent Calcium Indicator Dyes

  • Protocol
  • First Online:
Neural Tracing Methods

Part of the book series: Neuromethods ((NM,volume 92))

  • 2147 Accesses

Abstract

In vivo 2-photon imaging of neurons that have been bulk-loaded with fluorescent calcium indicator dyes is permitting many fundamental principles of neural circuit organization and development to be uncovered. In this article, we describe the materials and procedures that we have used in our investigations of ferrets, tree shrews, and mice. Special attention is given to the design and construction of custom stereotaxic devices and the prevention of stray light from entering the 2-photon microscope during vision experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76

    Article  CAS  PubMed  Google Scholar 

  2. Göppert-Mayer M (1931) Über Elementarakte mit zwei Quantensprüngen. Ann Phys 401(3):273–294. doi:10.1002/andp.19314010303

    Article  Google Scholar 

  3. Denk W, Svoboda K (1997) Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 18(3):351–357

    Article  CAS  PubMed  Google Scholar 

  4. Piston DW (1999) Imaging living cells and tissues by two-photon excitation microscopy. Trends Cell Biol 9(2):66–69

    Article  CAS  PubMed  Google Scholar 

  5. Takahashi A, Camacho P, Lechleiter JD, Herman B (1999) Measurement of intracellular calcium. Physiol Rev 79(4):1089–1125

    CAS  PubMed  Google Scholar 

  6. Euler T, Detwiler PB, Denk W (2002) Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418(6900):845–852, 10.1038/nature00931

    Article  CAS  PubMed  Google Scholar 

  7. Svoboda K, Denk W, Kleinfeld D, Tank DW (1997) In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385(6612):161–165. doi:10.1038/385161a0

    Article  CAS  PubMed  Google Scholar 

  8. Yuste R, Denk W (1995) Dendritic spines as basic functional units of neuronal integration. Nature 375(6533):682–684. doi:10.1038/375682a0

    Article  CAS  PubMed  Google Scholar 

  9. Yuste R, Tank DW (1996) Dendritic integration in mammalian neurons, a century after Cajal. Neuron 16:701–716

    Article  CAS  PubMed  Google Scholar 

  10. Grienberger C, Konnerth A (2012) Imaging calcium in neurons. Neuron 73(5):862–885. doi:10.1016/j.neuron.2012.02.011

    Article  CAS  PubMed  Google Scholar 

  11. Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003) In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci U S A 100(12):7319–7324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Tsien RY (1981) A non-disruptive technique for loading calcium buffers and indicators into cells. Nature 290(5806):527–528

    Article  CAS  PubMed  Google Scholar 

  13. Probes M (2010) Acetoxymethyl (AM) and acetate esters. http://tools.invitrogen.com/content/sfs/manuals/g002.pdf

  14. Kara P, Boyd JD (2009) A micro-architecture for binocular disparity and ocular dominance in visual cortex. Nature 458(7238):627–631. doi:10.1038/nature07721

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ohki K, Chung S, Ch'ng YH, Kara P, Reid RC (2005) Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433(7026):597–603

    Article  CAS  PubMed  Google Scholar 

  16. Ohki K, Chung S, Kara P, Hubener M, Bonhoeffer T, Reid RC (2006) Highly ordered arrangement of single neurons in orientation pinwheels. Nature 442(7105):925–928

    Article  CAS  PubMed  Google Scholar 

  17. Huber D, Gutnisky DA, Peron S, O'Connor DH, Wiegert JS, Tian L, Oertner TG, Looger LL, Svoboda K (2012) Multiple dynamic representations in the motor cortex during sensorimotor learning. Nature 484(7395):473–478. doi:10.1038/nature11039

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Vanhooser SD, Mazurek M, White LE, Fitzpatrick D (2008) Experience with moving visual stimuli drives the early development of cortical direction selectivity. Nature 456(7224):952–956, doi:nature07417 [pii]10.1038/nature07417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Van Hooser SD, Li Y, Christensson M, Smith GB, White LE, Fitzpatrick D (2012) Initial neighborhood biases and the quality of motion stimulation jointly influence the rapid emergence of direction preference in visual cortex. J Neurosci 32(21):7258–7266. doi:10.1523/JNEUROSCI.0230-12.2012

    Article  PubMed Central  PubMed  Google Scholar 

  20. Kerlin AM, Andermann ML, Berezovskii VK, Reid RC (2010) Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex. Neuron 67(5):858–871. doi:10.1016/j.neuron.2010.08.002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Kuhlman SJ, Tring E, Trachtenberg JT (2011) Fast-spiking interneurons have an initial orientation bias that is lost with vision. Nat Neurosci 14(9):1121–1123. doi:10.1038/nn.2890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Runyan CA, Schummers J, Van Wart A, Kuhlman SJ, Wilson NR, Huang ZJ, Sur M (2010) Response features of parvalbumin-expressing interneurons suggest precise roles for subtypes of inhibition in visual cortex. Neuron 67(5):847–857. doi:10.1016/j.neuron.2010.08.006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Sohya K, Kameyama K, Yanagawa Y, Obata K, Tsumoto T (2007) GABAergic neurons are less selective to stimulus orientation than excitatory neurons in layer II/III of visual cortex, as revealed by in vivo functional Ca2+ imaging in transgenic mice. J Neurosci 27:2145–2149

    Article  CAS  PubMed  Google Scholar 

  24. Li Y, Lu H, Cheng PL, Ge S, Xu H, Shi SH, Dan Y (2012) Clonally related visual cortical neurons show similar stimulus feature selectivity. Nature 486(7401):118–121. doi:10.1038/nature11110

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Jarosiewicz B, Schummers J, Malik WQ, Brown EN, Sur M (2012) Functional biases in visual cortex neurons with identified projections to higher cortical targets. Curr Biol 22(4):269–277. doi:10.1016/j.cub.2012.01.011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Ko H, Hofer SB, Pichler B, Buchanan KA, Sjostrom PJ, Mrsic-Flogel TD (2011) Functional specificity of local synaptic connections in neocortical networks. Nature 473(7345):87–91. doi:10.1038/nature09880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Bock DD, Lee WC, Kerlin AM, Andermann ML, Hood G, Wetzel AW, Yurgenson S, Soucy ER, Kim HS, Reid RC (2011) Network anatomy and in vivo physiology of visual cortical neurons. Nature 471(7337):177–182. doi:10.1038/nature09802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Briggman KL, Helmstaedter M, Denk W (2011) Wiring specificity in the direction-selectivity circuit of the retina. Nature 471(7337):183–188. doi:10.1038/nature09818

    Article  CAS  PubMed  Google Scholar 

  29. Chen X, Leischner U, Varga Z, Jia H, Deca D, Rochefort NL, Konnerth A (2012) LOTOS-based two-photon calcium imaging of dendritic spines in vivo. Nat Protoc 7(10):1818–1829. doi:10.1038/nprot.2012.106

    Article  CAS  PubMed  Google Scholar 

  30. Grienberger C, Adelsberger H, Stroh A, Milos RI, Garaschuk O, Schierloh A, Nelken I, Konnerth A (2012) Sound-evoked network calcium transients in mouse auditory cortex in vivo. J Physiol 590(Pt 4):899–918. doi:10.1113/jphysiol.2011.222513

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Jia H, Rochefort NL, Chen X, Konnerth A (2010) Dendritic organization of sensory input to cortical neurons in vivo. Nature 464(7293):1307–1312, doi:nature08947 [pii]10.1038/nature08947

    Article  CAS  PubMed  Google Scholar 

  32. Jia H, Rochefort NL, Chen X, Konnerth A (2011) In vivo two-photon imaging of sensory-evoked dendritic calcium signals in cortical neurons. Nat Protoc 6(1):28–35. doi:10.1038/nprot.2010.169

    Article  CAS  PubMed  Google Scholar 

  33. Garaschuk O, Milos RI, Grienberger C, Marandi N, Adelsberger H, Konnerth A (2006) Optical monitoring of brain function in vivo: from neurons to networks. Pflugers Arch 453(3):385–396. doi:10.1007/s00424-006-0150-x

    Article  CAS  PubMed  Google Scholar 

  34. Garaschuk O, Milos RI, Konnerth A (2006) Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo. Nat Protoc 1(1):380–386, doi:nprot.2006.58 [pii]10.1038/nprot.2006.58

    Article  CAS  PubMed  Google Scholar 

  35. Golshani P, Portera-Cailliau C (2008) In vivo 2-photon calcium imaging in layer 2/3 of mice. J Vis Exp 13. doi:10.3791/681

  36. Helmchen F, Waters J (2002) Ca2+ imaging in the mammalian brain in vivo. Eur J Pharmacol 447(2–3):119–129

    Article  CAS  PubMed  Google Scholar 

  37. Kleinfeld D, Denk W (2000) Two-photon imaging of neocortical microcirculation. In: Yuste R, Konnerth A, Lanni F (eds) Imaging neurons: a laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor, NY

    Google Scholar 

  38. Mostany R, Portera-Cailliau C (2008) A method for 2-photon imaging of blood flow in the neocortex through a cranial window. J Vis Exp 12. doi:10.3791/678

  39. Ohki K, Reid RC (2011) In Vivo Two-Photon Calcium Imaging in the Visual System. In: Helmchen F, Konnerth A (eds) Imaging in neuroscience: a laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor, NY, pp 511–528

    Google Scholar 

  40. Rochefort NL, Grienberger C, Konnerth A (2011) In Vivo Two-Photon Calcium Imaging Using Multicell Bolus Loading of Fluorescent Indicators. In: Helmchen F, Konnerth A (eds) Imaging in neuroscience: a laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor, NY, pp 491–500

    Google Scholar 

  41. Shih AY, Mateo C, Drew PJ, Tsai PS, Kleinfeld D (2012) A polished and reinforced thinned-skull window for long-term imaging of the mouse brain. J Vis Exp 61. doi:10.3791/3742

  42. Svoboda K, Tank DW, Stepnoski RA, Denk W (2000) Two-photon Imaging of Neuronal Function in the Neocortex In Vivo. In: Yuste R, Konnerth A, Lanni F (eds) Imaging neurons: a laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor, NY

    Google Scholar 

  43. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2(12):932–940. doi:10.1038/nmeth818

    Article  CAS  PubMed  Google Scholar 

  44. Helmchen F, Denk W (2002) New developments in multiphoton microscopy. Curr Opin Neurobiol 12(5):593–601

    Article  CAS  PubMed  Google Scholar 

  45. Svoboda K, Yasuda R (2006) Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50(6):823–839

    Article  CAS  PubMed  Google Scholar 

  46. Margrie TW, Brecht M, Sakmann B (2002) In vivo, low-resistance, whole cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Arch 444:491–498

    Article  CAS  PubMed  Google Scholar 

  47. Judkewitz B, Rizzi M, Kitamura K, Hausser M (2009) Targeted single-cell electroporation of mammalian neurons in vivo. Nat Protoc 4(6):862–869. doi:10.1038/nprot.2009.56

    Article  CAS  PubMed  Google Scholar 

  48. Nimmerjahn A (2011) Two-Photon Imaging of Neuronal Structural Plasticity in Mice during and after Ischemia. In: Helmchen F, Konnerth A (eds) Imaging in neuroscience: a laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor, NY, pp 961–980

    Google Scholar 

  49. Nauhaus I, Nielsen KJ, Callaway EM (2012) Nonlinearity of two-photon Ca2+ imaging yields distorted measurements of tuning for V1 neuronal populations. J Neurophysiol 107(3):923–936. doi:10.1152/jn.00725.2011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Schummers J, Yu H, Sur M (2008) Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science 320(5883):1638–1643

    Article  CAS  PubMed  Google Scholar 

  51. Nauhaus I, Nielsen KJ, Disney AA, Callaway EM (2012) Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex. Nat Neurosci 15(12):1683–1690. doi:10.1038/nn.3255

    Article  CAS  PubMed  Google Scholar 

  52. Probes M (2013) Fluorescence SpectraViewer. http://www.invitrogen.com/site/us/en/home/support/Research-Tools/Fluorescence-SpectraViewer.html

  53. Xu C (2000) Two-photon Cross Sections of Indicators. In: Yuste R, Konnerth A, Lanni F (eds) Imaging neurons: a laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor, NY

    Google Scholar 

  54. Johnson EN, Van Hooser SD, Fitzpatrick D (2010) The representation of S-cone signals in primary visual cortex. J Neurosci 30(31):10337–10350, doi:30/31/10337 [pii]10.1523/JNEUROSCI.1428-10.2010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Histed MH, Bonin V, Reid RC (2009) Direct activation of sparse, distributed populations of cortical neurons by electrical microstimulation. Neuron 63(4):508–522, doi:S0896-6273(09)00545-5 [pii]10.1016/j.neuron.2009.07.016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Kerr JN, Greenberg D, Helmchen F (2005) Imaging input and output of neocortical networks in vivo. Proc Natl Acad Sci U S A 102(39):14063–14068

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Rochefort NL, Narushima M, Grienberger C, Marandi N, Hill DN, Konnerth A (2011) Development of direction selectivity in mouse cortical neurons. Neuron 71(3):425–432. doi:10.1016/j.neuron.2011.06.013

    Article  CAS  PubMed  Google Scholar 

  58. Sato TR, Gray NW, Mainen ZF, Svoboda K (2007) The functional microarchitecture of the mouse barrel cortex. PLoS Biol 5(7):e189. doi:10.1371/journal.pbio.0050189

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prakash Kara, Tom Mrsic-Flogel, Aaron Kerlin, and Clay Reid for their valuable advice as we were learning to perform 2-photon imaging. We also thank David Fitzpatrick and Leonard E. White for support and mentoring. We thank Frank Mello, machinist at Brandeis University, Don Pearce of the Medical Instrument Shop at Duke University Medical Center, and Janet Patterson of the Physics Machine Shop at Duke University for their creative input and expertise in building the stereotaxic devices we describe here. This work was supported by the National Institutes of Health, National Science Foundation, and the John Merck Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Van Hooser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Van Hooser, S.D. et al. (2015). Practical Methods for In Vivo Cortical Physiology with 2-Photon Microscopy and Bulk Loading of Fluorescent Calcium Indicator Dyes. In: Arenkiel, B. (eds) Neural Tracing Methods. Neuromethods, vol 92. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1963-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1963-5_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1962-8

  • Online ISBN: 978-1-4939-1963-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics