Skip to main content

Bioinformatics Approach to Understanding Interacting Pathways in Neuropsychiatric Disorders

  • Protocol
  • First Online:
Clinical Bioinformatics

Abstract

Bioinformatics-based applications have been incorporated into several medical disciplines, including cancer, neuroscience, and recently psychiatry. Both the increasing interest in the molecular aspect of neuropsychiatry and the availability of high-throughput discovery and analysis tools have encouraged the incorporation of bioinformatics and neurosystems biology techniques into psychiatry and neuroscience research. As applied to neuropsychiatry, systems biology involves the acquisition and processing of high-throughput datasets to infer new information. A major component in bioinformatics output is pathway analysis that provides an insight into and prediction of possible underlying pathogenic processes which may help understand disease pathogenesis. In addition, this analysis serves as a tool to identify potential biomarkers implicated in these disorders. In this chapter, we summarize the different tools and algorithms used in pathway analysis along with their applications to the different layers of molecular investigations, from genomics to proteomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CNVs:

Copy number variants

GWAS:

Genome-wide association study

SNPs:

Single-nucleotide polymorphisms

References

  1. International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945

    Article  Google Scholar 

  2. Benson DA, Karsch-Mizrachi I, Lipman DJ et al (2000) GenBank. Nucleic Acids Res 28:15–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Louie B, Mork P, Martin-Sanchez F et al (2007) Data integration and genomic medicine. J Biomed Inform 40:5–16

    Article  CAS  PubMed  Google Scholar 

  4. Luscombe NM, Greenbaum D, Gerstein M (2001) What is bioinformatics? A proposed definition and overview of the field. Methods Inf Med 40:346–358

    CAS  PubMed  Google Scholar 

  5. Alawieh A, Zaraket FA, Li JL et al (2012) Systems biology, bioinformatics, and biomarkers in neuropsychiatry. Front Neurosci 6:187

    Article  PubMed Central  PubMed  Google Scholar 

  6. Li MD (2010) Grand challenges and opportunities for molecular psychiatry research: a perspective. Front Psychiatry 1:2

    PubMed Central  PubMed  Google Scholar 

  7. Taurines R, Dudley E, Grassl J et al (2011) Proteomic research in psychiatry. J Psychopharmacol 25:151–196

    Article  CAS  PubMed  Google Scholar 

  8. Tovar D, Cornejo E, Xanthopoulos P et al (2012) Data mining in psychiatric research. Methods Mol Biol 829:593–603

    Article  PubMed  Google Scholar 

  9. Wang JT, Zaki MJ, Hannu TT et al (2005) Data mining in bioinformatics. In: Jain L, Wu X (eds) Introduction to data mining in bioinformatics. Springer, London, pp 3–8

    Chapter  Google Scholar 

  10. Holloway AJ, van Laar RK, Tothill RW et al (2002) Options available—from start to finish—for obtaining data from DNA microarrays II. Nat Genet 32:481–489

    Article  CAS  PubMed  Google Scholar 

  11. Brazma A, Hingamp P, Quackenbush J et al (2001) Minimum information about a microarray experiment (MIAME)—toward standards for microarray data. Nat Genet 29:365–371

    Article  CAS  PubMed  Google Scholar 

  12. Spellman PT, Miller M, Stewart J et al (2002) Design and implementation of microarray gene expression markup language (MAGE-ML). Genome Biol 3:Research0046

    Article  PubMed Central  PubMed  Google Scholar 

  13. Bajcsy P (2004) Gridline: automatic grid alignment DNA microarray scans. IEEE Trans Image Process 13:15–25

    Article  PubMed  Google Scholar 

  14. Yandell MD, Majoros WH (2002) Genomics and natural language processing. Nat Rev Genet 3:601–610

    Article  CAS  PubMed  Google Scholar 

  15. Karr AF (2006) Exploratory data mining and data cleaning. J Am Stat Assoc 101:399

    Article  CAS  Google Scholar 

  16. Fadlallah BH, Seth S, Keil A et al (2011) Robust EEG preprocessing for dependence-based condition discrimination. Conf Proc IEEE Eng Med Biol Soc 2011:1407–1410

    PubMed  Google Scholar 

  17. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. JMLR 3:1157–1182

    Google Scholar 

  18. Saeys Y, Inza I, Larrañaga P (2007) A review of feature selection techniques in bioinformatics. Bioinformatics 23:2507–2517

    Article  CAS  PubMed  Google Scholar 

  19. Liu H, Han H, Li J et al (2004) Using amino acid patterns to accurately predict translation initiation sites. In Silico Biol 4:255–269

    CAS  PubMed  Google Scholar 

  20. Saeys Y, Degroeve S, Aeyels D et al (2004) Feature selection for splice site prediction: a new method using EDA-based feature ranking. BMC Bioinformatics 5:64

    Article  PubMed Central  PubMed  Google Scholar 

  21. Ma S, Huang J (2005) Regularized ROC method for disease classification and biomarker selection with microarray data. Bioinformatics 21:4356–4362

    Article  CAS  PubMed  Google Scholar 

  22. Ressom HW, Varghese RS, Drake SK et al (2007) Peak selection from MALDI-TOF mass spectra using ant colony optimization. Bioinformatics 23:619–626

    Article  CAS  PubMed  Google Scholar 

  23. He J, Zelikovsky A (2006) MLR-tagging: informative SNP selection for unphased genotypes based on multiple linear regression. Bioinformatics 22:2558–2561

    Article  CAS  PubMed  Google Scholar 

  24. Wang Y, Makedon F, Pearlman J (2006) Tumor classification based on DNA copy number aberrations determined using SNP arrays. Oncol Rep 15:1057–1059

    CAS  PubMed  Google Scholar 

  25. Han B, Obradovic Z, Hu ZZ et al (2006) Substring selection for biomedical document classification. Bioinformatics 22:2136–2142

    Article  CAS  PubMed  Google Scholar 

  26. Bishop CM (2006) Pattern recognition and machine learning. Springer, New York

    Google Scholar 

  27. Han J, Kamber M (2011) Data mining: concepts and techniques, 3rd edn. Morgan Kaufmann, San Francisco, CA

    Google Scholar 

  28. Hastie T, Tibshirani R, Friedman J et al (2005) The elements of statistical learning: data mining, inference and prediction. Math Intel 27(2):83–85

    Article  Google Scholar 

  29. Lopresti D, Tomkins A (1997) Block edit models for approximate string matching. Theor Comput Sci 181:159–179

    Article  Google Scholar 

  30. Mount DW (2004) Bioinformatics: sequence and genome analysis, 2nd edn. Cold Spring Harbour Laboratory Press, Cold Spring Harbour, NY

    Google Scholar 

  31. Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques. Morgan Kaufmann, San Francisco, CA

    Google Scholar 

  32. Eisen MB, Spellman PT, Brown PO et al (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95:14863–14868

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Yang J, Wang W, Wang H et al (2002) δ-clusters: capturing subspace correlation in a large data set. Data engineering, 2002. In: Proceedings 18th international conference, IEEE, pp 517–528

    Google Scholar 

  34. Wang H, Wang W, Yang J et al (2002) Clustering by pattern similarity in large data sets. In: Proceedings of the 2002 ACM SIGMOD international conference on management of data, pp 394–405

    Google Scholar 

  35. Fayyad U, Wierse A, Grinstein G (2002) Information visualization in data mining and knowledge discovery. Morgan Kaufmann, San Francisco, CA

    Google Scholar 

  36. Frank E, Hall M, Trigg L et al (2004) Data mining in bioinformatics using Weka. Bioinformatics 20:2479–2481

    Article  CAS  PubMed  Google Scholar 

  37. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Diederich J, Al-Ajmi A, Yellowlees P (2007) Ex-ray: data mining and mental health. Appl Soft Comput 7:923–928

    Article  Google Scholar 

  39. Moore JH, Asselbergs FW, Williams SM (2010) Bioinformatics challenges for genome-wide association studies. Bioinformatics 26:445–455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Aulchenko YS, Ripke S, Isaacs A et al (2007) GenABEL: an R library for genome-wide association analysis. Bioinformatics 23:1294–1296

    Article  CAS  PubMed  Google Scholar 

  41. Gogarten SM, Bhangale T, Conomos MP et al (2012) GWASTools: an R/Bioconductor package for quality control and analysis of genome-wide association studies. Bioinformatics 28:3329–3331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Merelli I, Calabria A, Cozzi P et al (2013) SNPranker 2.0: a gene-centric data mining tool for diseases associated SNP prioritization in GWAS. BMC Bioinformatics 14(Suppl 1):S9

    PubMed Central  PubMed  Google Scholar 

  43. Pruim RJ, Welch RP, Sanna S et al (2010) LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26:2336–2337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Meyer LR, Zweig AS, Hinrichs AS et al (2013) The UCSC Genome Browser database: extensions and updates 2013. Nucleic Acids Res 41(Database issue):D64–D69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Robinson JT, Thorvaldsdóttir H, Winckler W et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium (2011) Genome-wide association study identifies five new schizophrenia loci. Nat Genet 43:969–976

    Article  Google Scholar 

  47. Collins AL, Sullivan PF (2013) Genome-wide association studies in psychiatry: what have we learned? Br J Psychiatry 202:1–4

    Article  PubMed  Google Scholar 

  48. Marshall CR, Scherer SW (2012) Detection and characterization of copy number variation in autism spectrum disorder. Methods Mol Biol 838:115–135

    Article  CAS  PubMed  Google Scholar 

  49. Greenwood TA, Lazzeroni LC, Murray SS (2011) Analysis of 94 candidate genes and 12 endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia. Am J Psychiatry 168:930–946

    Article  PubMed Central  PubMed  Google Scholar 

  50. Ayalew M, Le-Niculescu H, Levey DF et al (2012) Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol Psychiatry 17:887–905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Jamshidi N, Palsson BO (2006) Systems biology of SNPs. Mol Syst Biol 2:38

    Article  PubMed Central  PubMed  Google Scholar 

  52. Hakak Y, Walker JR, Li C et al (2001) Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci U S A 98:4746–4751

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Sequeira PA, Martin MV, Vawter MP (2012) The first decade and beyond of transcriptional profiling in schizophrenia. Neurobiol Dis 45:23–36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Gormanns P, Mueller NS, Ditzen C et al (2011) Phenome-transcriptome correlation unravels anxiety and depression related pathways. J Psychiatr Res 45:973–979

    Article  PubMed  Google Scholar 

  55. Nakatani N, Hattori E, Ohnishi T et al (2006) Genome-wide expression analysis detects eight genes with robust alterations specific to bipolar I disorder: relevance to neuronal network perturbation. Hum Mol Genet 15:1949–1962

    Article  CAS  PubMed  Google Scholar 

  56. Martins-de-Souza D, Gattaz WF, Schmitt A et al (2009) Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia. Eur Arch Psychiatry Clin Neurosci 259:151–163

    Article  PubMed  Google Scholar 

  57. Filiou MD, Zhang Y, Teplytska L et al (2011) Proteomics and metabolomics analysis of a trait anxiety mouse model reveals divergent mitochondrial pathways. Biol Psychiatry 70:1074–1082

    Article  CAS  PubMed  Google Scholar 

  58. Prabakaran S, Swatton JE, Ryan MM et al (2004) Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 9:684–697, 643

    Article  CAS  PubMed  Google Scholar 

  59. Hartigan JA (1972) Direct clustering of a data matrix. J Am Stat Assoc 67:123–129

    Article  Google Scholar 

  60. Cheng Y, Church GM (2000) Biclustering of expression data. Proc Int Conf Intell Syst Mol Biol 8:93–103

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firas H. Kobeissy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Alawieh, A. et al. (2014). Bioinformatics Approach to Understanding Interacting Pathways in Neuropsychiatric Disorders. In: Trent, R. (eds) Clinical Bioinformatics. Methods in Molecular Biology, vol 1168. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0847-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0847-9_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0846-2

  • Online ISBN: 978-1-4939-0847-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics