Skip to main content

Photoswitching of Cell Surface Receptors Using Tethered Ligands

  • Protocol
  • First Online:
Photoswitching Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1148))

Abstract

Optical probing and manipulation of cellular signaling has revolutionized biological studies ranging from isolated cells to intact tissues in the live animal. A promising avenue of optical manipulation is Chemical Optogenetics (or Optogenetic Pharmacology), an approach for engineering specific proteins to be rapidly and reversibly switched on and off with light. The approach employs synthetic photoswitched ligands, which can be reversibly photo-isomerized to toggle back and forth between two conformations in response to two wavelengths of light. We focus here on the photoswitched tethered ligand (PTL) approach in which the PTL is covalently attached in a site-directed manner to a signaling protein. For this a ligand anchoring site is introduced at a location which allows the ligand to dock only in one of the light-controlled conformations, thus enabling liganding to be rapidly switched. The ligand can be an agonist, antagonist or an active site (or pore) blocker. In principle, orthogonal chemistries of attachment would make PTL anchoring completely unique. However, extremely high specificity of remote control is also obtained by cysteine attachment because of the ligand specificity and precise geometric requirements for liganding. We describe here the design of light-gated ionotropic and metabotropic glutamate receptors, the selection of a site for cysteine placement, the method for PTL attachment, and a detailed protocol of photoswitching experiments in cultured cells. These descriptions can guide applications of Chemical Optogenetics to other receptors and serve as a starting point for use in more complex preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miesenböck G (2011) Optogenetic control of cells and circuits. Ann Rev Cell Dev Biol 27:731–758

    Article  Google Scholar 

  2. Fenno L, Yizhar O, Deisseroth K (2011) The development and application of optogenetics. Ann Rev Neurosci 34:389–412

    Article  CAS  PubMed  Google Scholar 

  3. Szobota S, Isacoff EY (2010) Optical control of neuronal activity. Annu Rev Biophys 39:329–348

    Article  CAS  PubMed  Google Scholar 

  4. Wyart C, Del Bene F, Warp E, Scott EK, Trauner D, Baier H, Isacoff EY (2009) Optogenetic dissection of a behavioural module in the vertebrate spinal cord. Nature 461(7262):407–410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Tye KM, Deisseroth K (2012) Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 13(4):251–266

    Article  CAS  PubMed  Google Scholar 

  6. Zhang F, Vierock J, Yizhar O, Fenno LE, Tsunoda S, Kianianmomeni A, Prigge M, Berndt A, Cushman J, Polle J, Magnuson J, Hegemann P, Deisseroth K (2011) The microbial opsin family of optogenetic tools. Cell 147(7):1446–1457

    Article  CAS  PubMed  Google Scholar 

  7. Reiner A, Isacoff EY (2013) The Brain Prize 2013: the optogenetics revolution. Trends Neurosci 36(10):557–560

    Google Scholar 

  8. Schröder-Lang S, Schwärzel M, Seifert R, Strünker T, Kateriya S, Looser J, Watanabe M, Kaupp UB, Hegemann P, Nagel G (2007) Fast manipulation of cellular cAMP level by light in vivo. Nat Methods 4(1):39–42

    Article  PubMed  Google Scholar 

  9. Möglich A, Moffat K (2010) Engineered photoreceptors as novel optogenetic tools. Photochem Photobiol Sci 9(10):1286–1300

    Article  PubMed  Google Scholar 

  10. Levskaya A, Weiner OD, Lim WA, Voigt CA (2009) Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461(7266):997–1001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Szymański W, Beierle JM, Kistemaker HA, Velema WA, Feringa BL (2013) Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. Chem Rev 113(8):6114–6178

    Google Scholar 

  12. Sakata T, Yan Y, Marriott G (2005) Optical switching of dipolar interactions on proteins. Proc Natl Acad Sci U S A 102(13):4759–4764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kocer A, Walko M, Meijberg W, Feringa BL (2005) A light-actuated nanovalve derived from a channel protein. Science 309(5735):755–758

    Article  CAS  PubMed  Google Scholar 

  14. Lougheed T, Borisenko V, Hennig T, Rück-Braun K, Woolley GA (2004) Photomodulation of ionic current through hemithioindigo-modified gramicidin channels. Org Biomol Chem 2(19):2798–2801

    Article  CAS  PubMed  Google Scholar 

  15. Wildemann D, Schiene-Fischer C, Aumüller T, Bachmann A, Kiefhaber T, Lücke C, Fischer G (2007) A nearly isosteric photosensitive amide-backbone substitution allows enzyme activity switching in ribonuclease S. J Am Chem Soc 129(16):4910–4918

    Article  CAS  PubMed  Google Scholar 

  16. Kaufman H, Vratsanos SM, Erlanger BF (1968) Photoregulation of an enzymic process by means of a light-sensitive ligand. Science 162(3861):1487–1489

    Article  CAS  PubMed  Google Scholar 

  17. Lester HA, Krouse ME, Nass MM, Wassermann NH, Erlanger BF (1980) A covalently bound photoisomerizable agonist: comparison with reversibly bound agonists at electrophorus electroplaques. J Gen Physiol 75(2):207–232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Loudwig S, Bayley H (2006) Photoisomerization of an individual azobenzene molecule in water: an on–off switch triggered by light at a fixed wavelength. J Am Chem Soc 128(38):12404–12405

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Y, Erdmann F, Fischer G (2009) Augmented photoswitching modulates immune signaling. Nat Chem Bio 5(10):724–726

    Article  CAS  Google Scholar 

  20. Schrader TE, Cordes T, Schreier WJ, Koller FO, Dong SL, Moroder L, Zinth W (2011) Folding and unfolding of light-triggered beta-hairpin model peptides. J Phys Chem B 115(18):5219–5226

    Article  CAS  PubMed  Google Scholar 

  21. Beharry AA, Woolley GA (2011) Azobenzene photoswitches for biomolecules. Chem Soc Rev 40(8):4422–4437

    Article  CAS  PubMed  Google Scholar 

  22. Woolley GA (2005) Photocontrolling peptide alpha helices. Acc Chem Res 38(6):486–493

    Article  CAS  PubMed  Google Scholar 

  23. Renner C, Moroder L (2006) Azobenzene as conformational switch in model peptides. ChemBioChem 7(6):868–878

    Article  CAS  PubMed  Google Scholar 

  24. Fehrentz T, Schönberger M, Trauner D (2011) Optochemical genetics. Angew Chem Int Ed Engl 50(50):12156–12182

    Article  CAS  PubMed  Google Scholar 

  25. Banghart M, Borges K, Isacoff E, Trauner D, Kramer RH (2004) Light-activated ion channels for remote control of neuronal firing. Nat Neurosci 7(12):1381–1386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Fortin DL, Dunn TW, Fedorchak A, Allen D, Montpetit R, Banghart MR, Trauner D, Adelman JP, Kramer RH (2011) Optogenetic photochemical control of designer K+ channels in mammalian neurons. J Neurophysiol 106(1):488–496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Sandoz G, Levitz J, Kramer RH, Isacoff EY (2012) Optical control of endogenous proteins with a photoswitchable conditional subunit reveals a role for TREK1 in GABA(B) signaling. Neuron 74(6):1005–1014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Sandoz G, Levitz J (2013) Optogenetic techniques for the study of native potassium channels. Front Mol Neurosci 6:6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Volgraf M, Gorostiza P, Numano R, Kramer RH, Isacoff EY, Trauner D (2006) Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat Chem Biol 2(1):47–52

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Szobota S, Gorostiza P, Del Bene F, Wyart C, Fortin DL, Kolstad KD, Tulyathan O, Volgraf M, Numano R, Aaron HL, Scott EK, Kramer RH, Flannery J, Baier H, Trauner D, Isacoff EY (2007) Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54(4):535–545

    Article  CAS  PubMed  Google Scholar 

  31. Janovjak H, Szobota S, Wyart C, Trauner D, Isacoff EY (2010) A light-gated, potassium-selective glutamate receptor for the optical inhibition of neuronal firing. Nat Neurosci 13(8):1027–1032

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Levitz J, Pantoja C, Gaub B, Janovjak H, Reiner A, Hoagland A, Schoppik D, Kane B, Stawski P, Schier AF, Trauner D, Isacoff EY (2013) Optical control of metabotropic glutamate receptors. Nat Neurosci 16(4):507–516

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32(8):421–431

    Article  CAS  PubMed  Google Scholar 

  34. Papagiakoumou E, Anselmi F, Bègue A, de Sars V, Glückstad J, Isacoff EY, Emiliani V (2010) Scanless two-photon excitation of channelrhodopsin-2. Nat Methods 7(10):848–854

    Google Scholar 

  35. Tochitsky I, Banghart MR, Mourot A, Yao JZ, Gaub B, Kramer RH, Trauner D (2012) Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors. Nat Chem 4(2):105–111

    Article  CAS  PubMed  Google Scholar 

  36. Hermanson G (2008) Bioconjugate techniques, 2nd edn. Academic Press, San Diego, CA

    Google Scholar 

  37. Gorostiza P, Volgraf M, Numano R, Szobota S, Trauner D, Isacoff EY (2007) Mechanisms of photoswitch conjugation and light activation of an ionotropic glutamate receptor. Proc Natl Acad Sci U S A 104(26):10865–10870

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Mourot A, Kienzler MA, Banghart MR, Fehrentz T, Huber FM, Stein M, Kramer RH, Trauner D (2011) Tuning photochromic ion channel blockers. ACS Chem Neurosci 2(9):536–543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Kienzler MA, Reiner A, Trautman E, Yoo S, Trauner D, Isacoff EY (2013) A red-shifted, fast-relaxing azobenzene photoswitch for visible light control of an ionotropic glutamate receptor. J Am Chem Soc 135(47):17683–17686

    Google Scholar 

  40. Zhou LM, Gu ZQ, Costa AM, Yamada KA, Mansson PE, Giordano T, Skolnick P, Jones KA (1997) (2S,4R)-4-methylglutamic acid (SYM 2081): a selective, high-affinity ligand for kainate receptors. J Pharm Exp Ther 280(1):422–427

    CAS  Google Scholar 

  41. Numano R, Szobota S, Lau AY, Gorostiza P, Volgraf M, Roux B, Trauner D, Isacoff EY (2009) Nanosculpting reversed wavelength sensitivity into a photoswitchable iGluR. Proc Natl Acad Sci U S A 106(16):6814–6819

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Armstrong N, Gouaux E (2000) Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. Neuron 28(1):165–181

    Article  CAS  PubMed  Google Scholar 

  43. Mayer ML (2005) Crystal structures of the GluR5 and GluR6 ligand binding cores: molecular mechanisms underlying kainate receptor selectivity. Neuron 45(4):539–552

    Article  CAS  PubMed  Google Scholar 

  44. Volgraf M, Gorostiza P, Szobota S, Helix MR, Isacoff EY, Trauner D (2007) Reversibly caged glutamate: a photochromic agonist of ionotropic glutamate receptors. J Am Chem Soc 129(2):260–261

    Article  CAS  PubMed  Google Scholar 

  45. Reiner A, Isacoff EY (2014) Tethered ligands reveal glutamate receptor desensitization depends on subunit occupancy. Nat Chem Biol

    Google Scholar 

  46. Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51(1):7–61

    CAS  PubMed  Google Scholar 

  47. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62(3):405–496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Egebjerg J, Bettler B, Hermans-Borgmeyer I, Heinemann S (1991) Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not AMPA. Nature 351(6329):745–748

    Article  CAS  PubMed  Google Scholar 

  49. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Assoc, Sunderland, USA

    Google Scholar 

  50. Egebjerg J, Heinemann SF (1993) Ca2+ permeability of unedited and edited versions of the kainate selective glutamate receptor GluR6. Proc Natl Acad Sci U S A 90(2):755–759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Burnashev N, Villarroel A, Sakmann B (1996) Dimensions and ion selectivity of recombinant AMPA and kainate receptor channels and their dependence on Q/R site residues. J Physiol 496:165–173

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Izquierdo-Serra M, Trauner D, Llobet A, Gorostiza P (2013) Optical modulation of neurotransmission using calcium photocurrents through the ion channel LiGluR. Front Mol Neurosci 6:3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Li D, Herault K, Isacoff EY, Oheim M, Ropert N (2012) Optogenetic activation of LiGluR-expressing astrocytes evokes anion channel-mediated glutamate release. J Physiol 590(Pt 4):855–873

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Izquierdo-Serra M, Trauner D, Llobet A, Gorostiza P (2013) Optical control of calcium-regulated exocytosis. Biochim Biophys Acta 1830(3):2853–2860

    Article  CAS  PubMed  Google Scholar 

  55. Caporale N, Kolstad KD, Lee T, Tochitsky I, Dalkara D, Trauner D, Kramer R, Dan Y, Isacoff EY, Flannery JG (2011) LiGluR restores visual responses in rodent models of inherited blindness. Mol Ther 19(7):1212–1219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Kauwe G, Isacoff EY (2013) Rapid feedback regulation of synaptic efficacy during high-frequency activity at the Drosophila larval neuromuscular junction. Proc Natl Acad Sci U S A 110:9142–9147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. CSHL Press, Cold Spring Harbor, USA

    Google Scholar 

  58. Thomas P, Smart TG (2005) HEK293 cell line: a vehicle for the expression of recombinant proteins. J Pharmacol Toxicol Methods 51(3):187–200

    Article  CAS  PubMed  Google Scholar 

  59. Getz EB, Xiao M, Chakrabarty T, Cooke R, Selvin PR (1999) A comparison between the sulfhydryl reductants tris(2-carboxyethyl)phosphine and dithiothreitol for use in protein biochemistry. Anal Biochem 273(1):73–80

    Article  CAS  PubMed  Google Scholar 

  60. Salmon ED, Canman JC (2003) Proper alignment and adjustment of the light microscope. Curr Proto Hum Genet Appendix 3:Appendix 3N

    Google Scholar 

  61. Fischer AH, Jacobson KA, Rose J, Zeller R (2008) Preparation of slides and coverslips for microscopy. CSH Protoc 2008:pdb.prot4988

    Google Scholar 

  62. ATTC Animal Cell Culture Guide (2012) Tips and techniques for continuous cell lines. American type culture collection, Manassas, VA

    Google Scholar 

  63. Freshney R (2010) Culture of animal cells: a manual of basic technique and specialized applications, 6th edn. Wiley-Blackwell, Hoboken, NJ

    Book  Google Scholar 

  64. Sakmann B, Neher E (eds) (1995) Single-channel recording, 2nd edn. Plenum Press, New York, USA

    Google Scholar 

  65. Sherman-Gold R (ed) (2008) The axon guide: a guide to electrophysiology & biophysics laboratory techniques, 3rd edn. Molecular Devices, Sunnyvale, USA

    Google Scholar 

  66. Molleman A (2003) Patch clamping: an introductory guide to patch clamp electrophysiology, 1st edn. Wiley, Chichester, UK

    Google Scholar 

  67. Everts I, Villmann C, Hollmann M (1997) N-Glycosylation is not a prerequisite for glutamate receptor function but is essential for lectin modulation. Mol Pharmacol 52(5):861–873

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all previous and current lab members for their contributions in developing and refining the described photoswitch technologies. Moreover, we thank Richard Kramer and his lab for discussion, and Dirk Trauner and his lab for developing and providing MAG compounds. This work was supported by the National Institutes of Health Nanomedicine Development Center for the Optical Control of Biological Function (2PN2EY018241).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehud Y. Isacoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Reiner, A., Isacoff, E.Y. (2014). Photoswitching of Cell Surface Receptors Using Tethered Ligands. In: Cambridge, S. (eds) Photoswitching Proteins. Methods in Molecular Biology, vol 1148. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0470-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0470-9_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0469-3

  • Online ISBN: 978-1-4939-0470-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics