Skip to main content

Spatial Light Modulators for Complex Spatiotemporal Illumination of Neuronal Networks

  • Protocol
  • First Online:
Neuronal Network Analysis

Part of the book series: Neuromethods ((NM,volume 67))

Abstract

The introduction of fluorescent probes and light-sensitive molecules and the recent development of optogenetics are tremendously contributing to our understanding of neuronal circuit function. In parallel with the development of these optical tools, new technologies for the illumination of neural tissue with complex spatiotemporal patterns have been introduced. Here, we describe a method for generating spatially modulated illumination by using liquid crystal on silicon spatial light modulators (LCOS-SLMs). The theoretical background and the description of working principles of LCOS-SLMs are presented together with a detailed experimental procedure to install LCOS-SLMs on conventional two-photon laser scanning microscopes and perform experiments on neuronal cells. In combination with the development of light-sensitive proteins with cell-specific and subcellularly localized expression, this technical approach has the potential to open new horizons for the optical investigation of neuronal circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang J, Campbell RE, Ting AY et al (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–918

    Article  PubMed  CAS  Google Scholar 

  2. Giepmans BN, Adams SR, Ellisman MH et al (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224

    Article  PubMed  CAS  Google Scholar 

  3. Kramer RH, Fortin DL, Trauner D (2009) New photochemical tools for controlling neuronal activity. Curr Opin Neurobiol 19:544–552

    Article  PubMed  CAS  Google Scholar 

  4. Gorostiza P, Isacoff E (2007) Optical switches and triggers for the manipulation of ion channels and pores. Mol Biosyst 3:686–704

    Article  PubMed  CAS  Google Scholar 

  5. Airan RD, Hu ES, Vijaykumar R et al (2007) Integration of light-controlled neuronal firing and fast circuit imaging. Curr Opin Neurobiol 17:587–592

    Article  PubMed  CAS  Google Scholar 

  6. Zhang F, Aravanis AM, Adamantidis A et al (2007) Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci 8:577–581

    Article  PubMed  CAS  Google Scholar 

  7. Knopfel T, Lin MZ, Levskaya A et al (2010) Toward the second generation of optogenetic tools. J Neurosci 30:14998–15004

    Article  PubMed  CAS  Google Scholar 

  8. McManamon PF, Watson EA (2009) A review of phased array steering for narrow-band electrooptical systems. Proc IEEE 97:1078–1096

    Article  Google Scholar 

  9. Savage N (2009) Digital spatial light modulators. Nat Photonics 3:170–172

    Article  CAS  Google Scholar 

  10. Maurer C, Jesacher S, Bernet M et al (2011) What spatial light modulators can do for optical microscopy. Laser Photonics Rev 5:81–101

    Article  Google Scholar 

  11. Tyson RK (1991) Principles of adaptive optics. Academic Press, London

    Google Scholar 

  12. Hardy JW (1998) Adaptive optics for astronomical telescopes. Oxford University Press, Oxford

    Google Scholar 

  13. Neil MA, Juskaitis R, Booth MJ et al (2000) Adaptive aberration correction in a two-photon microscope. J Microsc 200(Pt 2):105–108

    Article  PubMed  Google Scholar 

  14. Lutz C, Otis TS, DeSars V et al (2008) Holographic photolysis of caged neurotransmitters. Nat Methods 5:821–827

    Article  PubMed  CAS  Google Scholar 

  15. Booth MJ (2007) Adaptive optics in microscopy. Philos Transact A Math Phys Eng Sci 365:2829–2843

    Article  PubMed  Google Scholar 

  16. Eriksen R, Daria V, Gluckstad J (2002) Fully dynamic multiple-beam optical tweezers. Opt Express 10:597–602

    PubMed  Google Scholar 

  17. Melville H, Milne G, Spalding G et al (2003) Optical trapping of three-dimensional structures using dynamic holograms. Opt Express 11:3562–3567

    Article  PubMed  CAS  Google Scholar 

  18. van der Horst A, Forde NR (2008) Calibration of dynamic holographic optical tweezers for force measurements on biomaterials. Opt Express 16:20987–21003

    Article  PubMed  Google Scholar 

  19. Bowman R, Gibson G, Padgett M (2010) Particle tracking stereomicroscopy in optical tweezers: control of trap shape. Opt Express 18:11785–11790

    Article  PubMed  Google Scholar 

  20. Cojoc D, Difato F, Ferrari E et al (2007) Properties of the force exerted by filopodia and lamellipodia and the involvement of cytoskeletal components. PLoS One 2:e1072

    Article  PubMed  Google Scholar 

  21. Mejean CO, Schaefer AW, Millman EA et al (2009) Multiplexed force measurements on live cells with holographic optical tweezers. Opt Express 17:6209–6217

    Article  PubMed  CAS  Google Scholar 

  22. Ji N, Milkie DE, Betzig E (2010) Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat Methods 7:141–147

    Article  PubMed  CAS  Google Scholar 

  23. Heintzman R (2010) Correcting distorted optics: back to the basic. Nat Photonics 7:108–110

    Google Scholar 

  24. Zahid M, Velez-Fort M, Papagiakoumou E et al (2010) Holographic photolysis for multiple cell stimulation in mouse hippocampal slices. PLoS One 5:e9431

    Article  PubMed  Google Scholar 

  25. Nikolenko V, Watson BO, Araya R et al (2008) SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators. Front Neural Circuits 2:5–19

    Article  PubMed  Google Scholar 

  26. Goodman JW (2005) Introduction to Fourier optics. Roberts & Company, Greenwood Village, CO

    Google Scholar 

  27. Khoo IA (2007) Liquid crystals. Wiley, Hoboken, NJ

    Book  Google Scholar 

  28. Vicari L (2003) Optical applications of liquid crystals. Institute of Physics Publishing Ltd, London

    Book  Google Scholar 

  29. Efron U (1994) Spatial light modulator technology: material, devices and applications. Marcel Dekker Inc., New York, NY

    Google Scholar 

  30. Dayton D, Browne S, Gonglewski J et al (2001) Characterization and control of a multielement dual-frequency liquid-crystal device for high-speed adaptive optical wave-front correction. Appl Opt 40:2345–2355

    Article  PubMed  CAS  Google Scholar 

  31. Dal Maschio M, Difato F, Beltramo R et al (2010) Simultaneous two-photon imaging and photo-stimulation with structured light illumination. Opt Express 18:18720–18731

    Article  PubMed  CAS  Google Scholar 

  32. Nikolenko V, Peterka DS, Yuste R (2010) A portable laser photostimulation and imaging microscope. J Neural Eng 7:045001

    Article  PubMed  Google Scholar 

  33. Peron S, Svoboda K (2011) From cudgel to scalpel: toward precise neural control with optogenetics. Nat Methods 8:30–34

    Article  PubMed  CAS  Google Scholar 

  34. Andrasfalvy BK, Zemelman BV, Tang J et al (2010) Two-photon single-cell optogenetic control of neuronal activity by sculpted light. Proc Natl Acad Sci USA 107:11981–11986

    Article  PubMed  CAS  Google Scholar 

  35. Papagiakoumou E, Anselmi F, Begue A et al (2010) Scanless two-photon excitation of channelrhodopsin-2. Nat Methods 7:848–854

    Article  PubMed  CAS  Google Scholar 

  36. Palima D, Alonzo CA, Rodrigo PJ et al (2007) Generalized phase contrast matched to Gaussian illumination. Opt Express 15:11971–11977

    Article  PubMed  Google Scholar 

  37. Gluckstad J, Palima D (2010) Generalized phase contrast. Springer in association with Canopus Academic Publishing Limited, Dordrecht, NE

    Google Scholar 

  38. Lee WM, Reece PJ, Marchington RF et al (2007) Construction and calibration of an optical trap on a fluorescence optical microscope. Nat Protoc 2:3226–3238

    Article  PubMed  CAS  Google Scholar 

  39. Martin-Badosa E, Montes-Usategui M, Carnicer A et al (2007) Design strategies for optimizing holographic optical tweezers set-ups. J Opt A Pure Appl Opt 9:S267–S277

    Article  Google Scholar 

  40. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940

    Article  PubMed  CAS  Google Scholar 

  41. Papagiakoumou E, de Sars V, Oron D et al (2008) Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses. Opt Express 16:22039–22047

    Article  PubMed  CAS  Google Scholar 

  42. Shaevitz JW, Fletcher DA (2007) Enhanced three-dimensional deconvolution microscopy using a measured depth-varying point-spread function. J Opt Soc Am A Opt Image Sci Vis 24:2622–2627

    Article  PubMed  Google Scholar 

  43. Doering LC (2010) Protocols for neural cell culture. Springer, Heidelberg

    Book  Google Scholar 

  44. Daria VR, Stricker C, Bowman R et al (2009) Arbitrary multisite two-photon excitation in four dimensions. Appl Phys Lett 95:093701-1–093701-3

    Article  Google Scholar 

  45. Liesener J, Reicherter M, Haist T et al (2000) Multi-functional optical tweezers using computer-generated holograms. Opt Commun 185:77–82

    Article  CAS  Google Scholar 

  46. Leach J, Wulff K, Sinclair G et al (2006) Interactive approach to optical tweezers control. Appl Opt 45:897–903

    Article  PubMed  Google Scholar 

  47. Zalevsky Z, Mendlovic D, Dorsch RG (1996) Gerchberg–Saxton algorithm applied in the fractional Fourier or the Fresnel domain. Opt Lett 21:842–844

    Article  PubMed  CAS  Google Scholar 

  48. Golan L, Reutsky I, Farah N et al (2009) Design and characteristics of holographic neural photo-stimulation systems. J Neural Eng 6:066004

    Article  PubMed  CAS  Google Scholar 

  49. Papagiakoumou E, de Sars V, Emiliani V et al (2009) Temporal focusing with spatially modulated excitation. Opt Express 17:5391–5401

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Gian Michele Ratto for critical reading of the manuscript. This work was supported by grants from MIUR PRIN program to F. Benfenati, Telethon-Italy (GGP09134 to F. Benfenati and GGP10138 to T. Fellin), and by the San Paolo “Programma in Neuroscienze” grant to F. Benfenati and T. Fellin.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Difato, F., Maschio, M.D., Beltramo, R., Blau, A., Benfenati, F., Fellin, T. (2011). Spatial Light Modulators for Complex Spatiotemporal Illumination of Neuronal Networks. In: Fellin, T., Halassa, M. (eds) Neuronal Network Analysis. Neuromethods, vol 67. Humana Press. https://doi.org/10.1007/7657_2011_3

Download citation

  • DOI: https://doi.org/10.1007/7657_2011_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-632-6

  • Online ISBN: 978-1-61779-633-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics