Skip to main content

Identification of p53 in Mitochondria

  • Protocol
  • First Online:
p53 Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 962))

Abstract

p53 is a master regulator of cell death pathways and has transcription-dependent and transcription-independent modes of action. Mitochondria are major signal transducers in apoptosis and are critical for p53-dependent cell death. Our lab and others have discovered that a fraction of stress-induced wild-type p53 protein rapidly translocates to mitochondria upon various stress stimuli and exerts p53-dependent apoptosis. Suborganellar localization by various methods shows that p53 localizes to the surface of mitochondria. Direct targeting of p53 to mitochondria is sufficient to induce apoptosis in p53-null cells, without requiring further DNA damage. Recently, p53 has been also shown to localize to other mitochondrial compartments such as the mitochondrial matrix where it plays a role in maintaining mitochondrial genome integrity. Here, we describe subcellular fractionation as a classic technique for detecting mitochondrial p53 in cell extracts. It consists of cell homogenization by hypo-osmotic swelling, removal of nuclear components by low-speed centrifugation, and mitochondrial isolation by a discontinuous sucrose density gradient. Additionally, we describe a method for submitochondrial fractionation, performed by phosphate buffer mediated swelling/shrinking. p53 and other mitochondrial proteins can then be detected by standard immunoblotting procedures. The quality of mitochondrial isolates/subfractions can be verified for purity and intactness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  PubMed  CAS  Google Scholar 

  2. Harris CC (1996) Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies. J Natl Cancer Inst 88:1442–1455

    Article  PubMed  CAS  Google Scholar 

  3. Gottlieb TM, Oren M (1998) p53 and apoptosis. Semin Cancer Biol 8:359–368

    Article  PubMed  CAS  Google Scholar 

  4. Brenner C, Kroemer G (2000) Apoptosis. Mitochondria – the death signal integrators. Science 289:1150–1151

    Article  PubMed  CAS  Google Scholar 

  5. Moll UM, Zaika A (2001) Nuclear and mitochondrial apoptotic pathways of p53. FEBS Lett 493:65–69

    Article  PubMed  CAS  Google Scholar 

  6. Marchenko ND, Zaika A, Moll UM (2000) Death signal-induced localization of p53 ­protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem 275:16202–16212

    Article  PubMed  CAS  Google Scholar 

  7. Sansome C, Zaika A, Marchenko ND, Moll UM (2001) Hypoxia death stimulus induces translocation of p53 protein to mitochondria. Detection by immunofluorescence on whole cells. FEBS Lett 488:110–115

    Article  PubMed  CAS  Google Scholar 

  8. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, Moll UM (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11:577–590

    Article  PubMed  CAS  Google Scholar 

  9. Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, Green DR (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303:1010–1014

    Article  PubMed  CAS  Google Scholar 

  10. Talos F, Petrenko O, Mena P, Moll UM (2005) Mitochondrially targeted p53 has tumor ­suppressor activities in vivo. Cancer Res 65:9971–9981

    Article  PubMed  CAS  Google Scholar 

  11. Palacios G, Moll UM (2006) Mitochondrially targeted wild-type p53 suppresses growth of mutant p53 lymphomas in vivo. Oncogene 25:6133–6139

    Article  PubMed  CAS  Google Scholar 

  12. Palacios G, Crawford HC, Vaseva A, Moll UM (2008) Mitochondrially targeted wild-type p53 induces apoptosis in a solid human tumor xenograft model. Cell Cycle 7(16):2584–2590

    Article  PubMed  CAS  Google Scholar 

  13. Achanta G, Sasaki R, Feng L, Carew JS, Lu W, Pelicano H, Keating MJ, Huang P (2005) Novel role of p53 in maintaining mitochondrial genetic stability through interaction with DNA Pol gamma. EMBO J 24:3482–3492

    Article  PubMed  CAS  Google Scholar 

  14. de Souza-Pinto NC, Harris CC, Bohr VA (2004) p53 functions in the incorporation step in DNA base excision repair in mouse liver mitochondria. Oncogene 23:6559–6568

    Article  PubMed  Google Scholar 

  15. Yoshida Y, Izumi H, Torigoe T, Ishiguchi H, Itoh H, Kang D, Kohno K (2003) P53 physically interacts with mitochondrial transcription factor A and differentially regulates binding to damaged DNA. Cancer Res 63:3729–3734

    PubMed  CAS  Google Scholar 

  16. Vamecq J, Van Hoof F (1984) Implication of a peroxisomal enzyme in the catabolism of glutaryl-CoA. Biochem J 221:203–211

    PubMed  CAS  Google Scholar 

  17. Bhattacharya SK, Thakar JH, Johnson PL, Shanklin DR (1991) Isolation of skeletal muscle mitochondria from hamsters using an ionic medium containing ethylenediaminetetraacetic acid and nagarse. Anal Biochem 192:344–349

    Article  PubMed  CAS  Google Scholar 

  18. Beauvoit B, Rigoulet M, Guerin B (1989) Thermodynamic and kinetic control of ATP synthesis in yeast mitochondria: role of delta pH. FEBS Lett 244:255–258

    Article  PubMed  CAS  Google Scholar 

  19. Bogenhagen D, Clayton DA (1974) The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. J Biol Chem 249:7991–7995

    PubMed  CAS  Google Scholar 

  20. Hovius R, Lambrechts H, Nicolay K, de Kruijff B (1990) Improved methods to isolate and subfractionate rat liver mitochondria. Lipid composition of the inner and outer membrane. Biochim Biophys Acta 1021:217–226

    Article  PubMed  CAS  Google Scholar 

  21. Bijur GN, Jope RS (2003) Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3-kinase activation. J Neurochem 87:1427–1435

    Article  PubMed  CAS  Google Scholar 

  22. Milon L, Meyer P, Chiadmi M, Munier A, Johansson M, Karlsson A, Lascu I, Capeau J, Janin J, Lacombe ML (2000) The human nm23-H4 gene product is a mitochondrial nucleoside diphosphate kinase. J Biol Chem 275:14264–14272

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ute M. Moll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Vaseva, A.V., Moll, U.M. (2013). Identification of p53 in Mitochondria. In: Deb, S., Deb, S. (eds) p53 Protocols. Methods in Molecular Biology, vol 962. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-236-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-236-0_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-235-3

  • Online ISBN: 978-1-62703-236-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics