Skip to main content

Arabidopsis thaliana Membrane Lipid Molecular Species and Their Mass Spectral Analysis

  • Protocol
  • First Online:
High-Throughput Phenotyping in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 918))

Abstract

Herein, current approaches to electrospray ionization mass spectrometry-based analyses of membrane lipid molecular species found in Arabidopsis thaliana are summarized. Additionally, the identities of over 500 reported membrane lipid molecular species are assembled.

The first two authors contributed equally

Supplementary material

This chapter contains a supplementary material which can be found at the publisher’s website (http://extras.springer.com).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Welti R, Wang X (2004) Lipid species profiling: a high-throughput approach to identify lipid compositional changes and determine the function of genes involved in lipid metabolism and signaling. Curr Opin Plant Biol 7:337–344

    Article  PubMed  CAS  Google Scholar 

  2. Welti R, Shah J, LeVine S et al (2005) High- throughput lipid profiling to identify and characterize genes involved in lipid metabolism, signaling, and stress response. In: Feng L, Prestwich GD (eds) Functional lipidomics. Marcel Dekker, New York

    Google Scholar 

  3. Welti R, Roth MR, Deng Y et al (2007) Lipidomics: ESI MS/MS-based profiling to determine the function of genes involved in metabolism of complex lipids. In: Nikolau B (ed) Plant metabolomics. Springer, Dordrecht

    Google Scholar 

  4. Isaac G, Jeannotte R, Esch SW et al (2007) New mass-spectrometry-based strategies for lipids. Gen Eng Rev 28:129–157

    Article  CAS  Google Scholar 

  5. Welti R, Shah J, Li W et al (2007) Plant lipidomics: discerning biological function by profiling plant complex lipids using mass spectrometry. Front Biosci 12:2494–2506

    Article  PubMed  CAS  Google Scholar 

  6. Welti R (2010) Plant lipidomics. In: AOCS lipid library. http://lipidlibrary.aocs.org/plantbio/plantlipidomics/index.htm

  7. Li-Beisson Y, Shorrosh B, Beisson F et al (2010) Acyl lipid metabolism. Arabidopsis Book 8:1–65. http://aralip.plantbiology.msu.edu/data/tab_methods.pdf

    Google Scholar 

  8. Welti R, Li W, Li M et al (2002) Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis. J Biol Chem 277:31994–32002

    Article  PubMed  CAS  Google Scholar 

  9. Shiva S, Vu HS, Roth MR et al Lipidomic analysis of plant membrane lipids by direct infusion tandem mass spectrometry. In: Munnik T, Heilmann I (eds) Plant lipid signaling protocols, methods in molecular biology. Humana Press, New York (in press)

    Google Scholar 

  10. Nandi A, Krothapalli K, Buseman C et al (2003) The Arabidopsis thaliana sfd mutants affect plastidic lipid composition and suppress dwarfing, cell death and the enhanced disease resistance phenotypes resulting from the deficiency of a fatty acid desaturase. Plant Cell 15:2383–2398

    Article  PubMed  CAS  Google Scholar 

  11. Zhang W, Wang C, Qin C et al (2003) The oleate-stimulated phospholipase D, PLDδ, and phosphatidic acid decrease H2O2-induced cell death in Arabidopsis. Plant Cell 15:2285–2295

    Article  PubMed  CAS  Google Scholar 

  12. Nandi A, Welti R, Shah J (2004) The Arabidopsis thaliana dihydroxyacetone phosphate reductase gene suppressor of fatty acid desaturase deficiency1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance. Plant Cell 16:465–477

    Article  PubMed  CAS  Google Scholar 

  13. Li W, Li M, Zhang W et al (2004) The plasma membrane-bound phospholipase Dδ enhances freezing tolerance in Arabidopsis thaliana. Nat Biotechnol 22:427–433

    Article  PubMed  Google Scholar 

  14. Li M, Zhang W, Welti R et al (2006) Double knockouts of phospholipase Dζ1 and ζ2 in Arabidopsis affect root elongation under phosphate limitation, but do not affect root hair patterning. Plant Physiol 140:761–770

    Article  PubMed  CAS  Google Scholar 

  15. Li M, Welti R, Wang X (2006) Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation: roles of PLDζ1 and PLDζ2 in phosphatidylcholine hydrolysis and digalactosyldiacylglycerol accumulation in phosphorus-starved plants. Plant Physiol 142:750–761

    Article  PubMed  CAS  Google Scholar 

  16. Cruz-Ramirez A, Oropeza-Aburto A, Razo-Hernandez F et al (2006) Phospholipase DZ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots. Proc Natl Acad Sci USA 103:6765–6770

    Article  PubMed  CAS  Google Scholar 

  17. Chen J, Burke JJ, Xin Z et al (2006) Characterization of the Arabidopsis thermosensitive mutant atts02 reveals an important role for galactolipids in thermotolerance. Plant Cell Environ 29:1437–1448

    Article  PubMed  CAS  Google Scholar 

  18. Fritz M, Lokstein H, Hackenberg D et al (2007) Chanelling of eukaryotic diacylglycerol into the biosynthesis of plastidial phosphatidylglycerol. J Biol Chem 282:4613–4625

    Article  PubMed  CAS  Google Scholar 

  19. Yang W, Devaiah S, Pan X et al (2007) AtPLAI is an LRR-containing acyl hydrolase involved in basal jasmonic acid product ion and Arabidopsis resistance to Botrytis cinerea. J Biol Chem 282:18116–18128

    Article  PubMed  CAS  Google Scholar 

  20. Devaiah S, Pan X, Hong Y et al (2007) Enhancing seed quality and viability by suppressing phospholipase D in Arabidopsis. Plant J 50:950–957

    Article  PubMed  CAS  Google Scholar 

  21. Kachroo A, Shanklin J, Whittle E et al (2007) The Arabidopsis stearoyl-acyl carrier protein-desaturase family and the contribution of leaf isoforms to oleic acid synthesis. Plant Mol Biol 63:257–271

    Article  PubMed  CAS  Google Scholar 

  22. Li W, Wang R, Li M et al (2008) Differential degradation of extraplastidic and plastidic lipids during freezing and post-freezing recovery in Arabidopsis thaliana. J Biol Chem 283:461–468

    Article  PubMed  CAS  Google Scholar 

  23. Maeda H, Sage TL, Isaac G et al (2008) Tocopherols modulate extra-plastidic polyunsaturated fatty acid metabolism in Arabidopsis at low temperature. Plant Cell 20:452–470

    Article  PubMed  CAS  Google Scholar 

  24. Hong Y, Pan X, Welti R et al (2008) Alterations of phospholipase Dα3 change Arabidopsis response to salinity and water deficits. Plant Cell 20:803–816

    Article  PubMed  CAS  Google Scholar 

  25. Hong Y, Pan X, Welti R et al (2008) The effect of phospholipase Dα3 on Arabidopsis response to hyperosmotic stress and glucose. Plant Signal Behav 3:1099–1100

    Article  PubMed  Google Scholar 

  26. Xiao S, Li HY, Zhang JP et al (2008) Arabidopsis acyl-CoA-binding proteins ACBP4 and ACBP5 are subcellularly localized to the cytosol and ACBP4 depletion affects membrane lipid composition. Plant Mol Biol 68:571–583

    Article  PubMed  CAS  Google Scholar 

  27. Chen M, Markham JE, Dietrich CR et al (2008) Sphingolipid long-chain base hydroxylation is important for growth and regulation of sphingolipid content and composition in Arabidopsis. Plant Cell 20:1862–1878

    Article  PubMed  CAS  Google Scholar 

  28. Chen Q-F, Shi X, Chye M-L (2008) Overexpression of the Arabidopsis 10-Kilodalton acyl-coenzyme A-binding protein ACBP6 enhances freezing tolerance. Plant Physiol 148:304–315

    Article  PubMed  CAS  Google Scholar 

  29. Hong Y, Devaiah SP, Bahn S et al (2009) Phospholipase Dε and phosphatidic acid enhance Arabidopsis growth. Plant J 58:376–387

    Article  PubMed  CAS  Google Scholar 

  30. Zhang Y, Zhu H, Zhang Q et al (2009) Phospholipase Dα1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis. Plant Cell 21:2357–2377

    Article  PubMed  CAS  Google Scholar 

  31. Zhang Q, Fry J, Rajashekar C et al (2009) Membrane polar lipid changes in zoysiagrass rhizomes and their potential role in freezing tolerance. J Am Soc Hort Sci 134:322–328

    Google Scholar 

  32. Xia Y, Gao Q, Yu K et al (2009) An intact cuticle in distal tissues is essential for the induction of systemic acquired resistance in plants. Cell Host Microbe 5:151–165

    Article  PubMed  CAS  Google Scholar 

  33. Reina-Pinto J, Voisin D, Kurdyukov S et al (2009) Misexpression of fatty acid elongation1 in the Arabidopsis epidermis induces cell death and suggests a critical role for phospholipase A2 in this process. Plant Cell 21:1252–1272

    Article  PubMed  CAS  Google Scholar 

  34. Keogh M, Courtney PD, Kinney AJ et al (2009) Functional characterization of phospholipid N-methyltransferases from Arabidopsis and soybean. J Biol Chem 284:15439–15447

    Article  PubMed  CAS  Google Scholar 

  35. Kirik A, Mudgett MB (2009) SOBER1 phospholipase activity suppresses phosphatidic acid accumulation and plant immunity in response to bacterial effector. Proc Natl Acad Sci USA 106:20532–20537

    Article  PubMed  CAS  Google Scholar 

  36. Bais P, Moon SM, He K et al (2010) PlantMetabolomics.org: a web portal for plant metabolomics experiments. Plant Physiol 152:1807–1816

    Article  PubMed  CAS  Google Scholar 

  37. Peters C, Li M, Narasimhan R et al (2010) Nonspecific phospholipase C NPC4 promotes responses to abscisic acid and tolerance to hyperosmotic stress in Arabidopsis. Plant Cell 22:2642–2659

    Article  PubMed  CAS  Google Scholar 

  38. Yu L, Nie J, Cao C et al (2010) Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol 188:762–773

    Article  PubMed  CAS  Google Scholar 

  39. Shen W, Li JQ, Dauk M et al (2010) Metabolic and transcriptional responses of glycerolipid pathways to a perturbation of glycerol 3-phosphate metabolism in Arabidopsis. J Biol Chem 285:22957–22965

    Article  PubMed  CAS  Google Scholar 

  40. Du Z-Y, Xiao S, Chen QF et al (2010) Depletion of the membrane-associated acyl-coenzyme A-binding protein ACBP1 enhances the ability of cold acclimation in Arabidopsis. Plant Physiol 152:1585–1597

    Article  PubMed  CAS  Google Scholar 

  41. Chen H, Xiong L (2010) myo-Inositol-1-phosphate synthase is required for polar auxin transport and organ development. J Biol Chem 285:24238–24247

    Article  PubMed  CAS  Google Scholar 

  42. Chen M, Thelen JJ (2010) The plastid isoform of triose phosphate isomerase is required for the postgerminative transition from heterotrophic to autotrophic growth in Arabidopsis. Plant Cell 22:77–90

    Article  PubMed  Google Scholar 

  43. Chen QF, Xian S, Qi W et al (2010) The Arabidopsis acbp1acbp2 double mutant lacking acyl-CoA-binding proteins ACBP1 and ACBP2 is embryo lethal. New Phytol 186:843–855

    Article  PubMed  CAS  Google Scholar 

  44. Kim H, Vijayan P, Carlsson AS et al (2010) A mutation in the LPAT1 gene suppresses the sensitivity of fab1 plants to low temperature. Plant Physiol 153:1135–1143

    Article  PubMed  CAS  Google Scholar 

  45. Li M, Bahn SC, Guo L et al (2011) Alterations of patatin-related phospholipase pPLAIIIβ reveal effects of membrane lipid metabolism on cellulose content and anisotropic cell expansion in Arabidopsis. Plant Cell 23:1107–1123

    Article  PubMed  CAS  Google Scholar 

  46. Burgos A, Szymanski J, Seiwert B et al (2011) Analysis of short-term changes in the Arabidopsis thaliana glycerolipidome in response to temperature and light. Plant J 66:656–666

    Article  PubMed  CAS  Google Scholar 

  47. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  48. Brügger B, Erben G, Sandhoff R et al (1997) Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci USA 94:2339–2344

    Article  PubMed  Google Scholar 

  49. Xiao S, Gao W, Chen Q-F et al (2010) Overexpression of Arabidopsis acyl-CoA binding protein ACBP3 promotes starvation-induced and age-dependent leaf senescence. Plant Cell 22:1463–1482

    Article  PubMed  CAS  Google Scholar 

  50. Welti R, Wang X, Williams TD (2003) Electrospray ionization tandem mass spectrometry scan modes for plant chloroplast lipids. Anal Biochem 314:149–152

    Article  PubMed  CAS  Google Scholar 

  51. Zhou Z, Marepally SR, Nune DS et al (2011) LipidomeDB data calculation environment: online processing of direct-infusion mass spectral data for lipid profiles. Lipids 46:879–884

    Article  PubMed  CAS  Google Scholar 

  52. Devaiah SP, Roth MR, Baughman E et al (2006) Quantitative profiling of polar glycerolipid species and the role of phospholipase Dα1 in defining the lipid species in Arabidopsis tissues. Phytochemistry 67:1907–1924

    Article  PubMed  CAS  Google Scholar 

  53. Markham JE, Jaworski JG (2007) Rapid measurement of sphingolipids from Arabidopsis thaliana by reversed-phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 21:1304–1314

    Article  PubMed  CAS  Google Scholar 

  54. Markham J, Li J, Cahoon EB et al (2006) Separation and identification of major plant sphingolipid classes from leaves. J Biol Chem 281:22684–22694

    Article  PubMed  CAS  Google Scholar 

  55. Chao D-Y, Gable K, Chen M et al (2011) Sphingolipids in the root play an important role in regulating the leaf ionome in Arabidopsis thaliana. Plant Cell 23:1061–1081

    Article  PubMed  CAS  Google Scholar 

  56. Chen M, Markham JE, Dietrich CR et al (2008) Sphingolipid long-chain base hydroxylation is important for growth and regulation of sphingolipid content and composition in Arabidopsis. Plant Cell 20:1862–1878

    Article  PubMed  CAS  Google Scholar 

  57. Tsegaye Y, Richardson CG, Bravo JE et al (2007) Arabidopsis mutants lacking long chain base phosphate lyase are fumonisin-sensitive and accumulate trihydroxy-18:1 long chain base phosphate. J Biol Chem 282:28195–28206

    Article  PubMed  CAS  Google Scholar 

  58. Chen M, Markham JE, Cahoon EB (2011) Sphingolipid Δ8 unsaturation is important for glucosylceramide biosynthesis and low temperature performance in Arabidopsis. Plant J. doi:10.1111/j.1365-313X.2011.04829.x

  59. Saucedo-García M, Guevara-García A, González-Solís A et al (2011) MPK6, sphinganine and the LCB2a gene from serine palmitoyltransferase are required in the signaling pathway that mediates cell death induced by long chain bases in Arabidopsis. New Phytol 191:943–957

    Article  PubMed  Google Scholar 

  60. Markham JE, Molino D, Gissot L et al (2011) Sphingolipids containing very-long-chain fatty acids define a secretory pathway for specific polar plasma membrane protein targeting in Arabidopsis. Plant Cell 23:2362–2378

    Article  PubMed  CAS  Google Scholar 

  61. Roudier F, Gissot L, Beaudoin F et al (2010) Very-long-chain fatty acids are involved in polar auxin transport and developmental patterning in Arabidopsis. Plant Cell 22:364–375

    Article  PubMed  CAS  Google Scholar 

  62. Wewer V, Dombrick I, vom Dorp K et al (2011) Quantification of sterol lipids in plants by quadrupole time-of-flight mass spectrometry. J Lipid Res 52:1039–1054

    Article  PubMed  CAS  Google Scholar 

  63. Schrick K, Shiva S, Arpin J et al (2011) Steryl glucoside and acyl steryl glucoside analysis of Arabidopsis seeds by electrospray ionization tandem mass spectrometry. Lipids. doi:10.1007/s11745-011-3602-9

  64. Buseman C, Tamura P, Sparks A et al (2006) Wounding stimulates the accumulation of glycerolipids containing oxophytodienoic acid and dinor-oxophytodienoic acid in Arabidopsis leaves. Plant Physiol 142:28–39

    Article  PubMed  CAS  Google Scholar 

  65. Andersson MX, Hamberg M, Kourtchenko O et al (2006) Oxylipin profiling of the hypersensitive response in Arabidopsis thaliana. Formation of a novel oxo-phytodienoic acid-containing galactolipid Arabidopside E. J Biol Chem 281:31528–31537

    Article  PubMed  CAS  Google Scholar 

  66. Glauser G, Grata E, Rudaz S et al (2008) High-resolution profiling of oxylipin containing galactolipids in Arabidopsis extracts by ultraperformance liquid chromatography/time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 22:3154–3160

    Article  PubMed  CAS  Google Scholar 

  67. Hisamatsu Y, Goto N, Hasegawa K et al (2003) Arabidopsides A and B, two new oxylipins from Arabidopsis thaliana. Tetrahedron Lett 44:5553–5556

    Article  CAS  Google Scholar 

  68. Hisamatsu Y, Goto N, Sekiguchi M et al (2005) Oxylipins arabidopsides C and D from Arabidopsis thaliana. J Nat Prod 68:600–603

    Article  PubMed  CAS  Google Scholar 

  69. Kourtchenko O, Andersson MX, Hamberg M et al (2007) Oxo-phytodienoic acid containing galactolipids in Arabidopsis: Jasmonate ­signaling dependence. Plant Physiol 145:1658–1669

    Article  PubMed  CAS  Google Scholar 

  70. Stelmach BA, Muller A, Hennig P et al (2001) A novel class of oxylipins, sn1-O-(12-oxophytodienoyl)-sn2-O-(hexadecatrienoyl)-monogalactosyl diglyceride, from Arabidopsis thaliana. J Biol Chem 276:12832–12838

    Article  PubMed  CAS  Google Scholar 

  71. Vu HS, Tamura P, Galeva NA et al (2012) Direct infusion mass spectrometry of oxylipin-containing Arabidopsis thaliana membrane lipids reveals varied patterns in different stress responses. Plant Physiol 158:324–339

    Google Scholar 

  72. Li C, Guan Z, Liu D et al (2011) Pathway for lipid A biosynthesis in Arabidopsis thaliana resembling that of Escherichia coli. Proc Natl Acad Sci USA 108:11387–11392

    Article  PubMed  CAS  Google Scholar 

  73. Kim YH, Choi J-S, Yoo JS et al (1999) Structural identification of glycerolipid molecular species isolated from Cyanobacterium synechocystis sp. PCC 6803 using fast atom bombardment tandem mass spectrometry. Anal Biochem 267:260–270

    Article  PubMed  CAS  Google Scholar 

  74. Yang W, Zheng Y, Bahn SC et al (2012) The patatin-containing phospholipase A pPLAIIα modulates oxylipin formation and water loss in Arabidopsis thaliana. Mol Plant 5:452–460

    Google Scholar 

  75. Hsu FF, Turk J, Williams TD et al (2007) Electrospray ionization multiple stage quadrupole ion-trap and tandem quadrupole mass spectrometric studies on phosphatidylglycerol from Arabidopsis leaves. J Am Soc Mass Spectrom 18:783–790

    Article  PubMed  CAS  Google Scholar 

  76. Nakajyo H, Hisamatsu Y, Sekiguchi M et al (2006) Arabidopside F, a new oxylipin from Arabidopsis thaliana. Heterocycles 69:295–301

    Article  CAS  Google Scholar 

  77. Okazaki Y, Shimojima M, Sawada Y et al (2009) A chloroplastic UDP-glucose pyrophosphorylase from Arabidopsis is the committed enzyme for the first step of sulfolipid biosynthesis. Plant Cell 21:892–909

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Welti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Samarakoon, T., Shiva, S., Lowe, K., Tamura, P., Roth, M.R., Welti, R. (2012). Arabidopsis thaliana Membrane Lipid Molecular Species and Their Mass Spectral Analysis. In: Normanly, J. (eds) High-Throughput Phenotyping in Plants. Methods in Molecular Biology, vol 918. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-995-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-995-2_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-994-5

  • Online ISBN: 978-1-61779-995-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics