Skip to main content

Using ΦC31 Integrase to Mediate Insertion of DNA in Xenopus Embryos

  • Protocol
  • First Online:
Xenopus Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 917))

Abstract

The two most common methods used to generate transgenic Xenopus embryos, restriction enzyme-mediated insertion, and I-SceI meganuclease take advantage of relatively common but spatially unpredictable double-stranded breaks in sperm, egg, or early embryo genomes. These methods also tend to insert multimeric copies of the transgene. An alternative is to use bacteriophage- or transposon-derived integrase or recombinase to mediate more site-specific insertion of the transgene. The use of phiC31 integrase requires a defined sequence for insertion and is compatible with insertion of a single copy of the transgene. We describe the protocol we use to facilitate phiC31 integrase transgene insertion including the use of insulator sequences to reduce position effect disruption of transgene activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thorpe HM, Smith MC (1998) In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc Natl Acad Sci USA 95:5505–5510

    Article  PubMed  CAS  Google Scholar 

  2. Smith MC, Burns RN, Wilson SE, Gregory MA (1999) The complete genome sequence of the Streptomyces temperate phage straight phiC31: evolutionary relationships to other viruses. Nucleic Acids Res 27:2145–2155

    Article  PubMed  CAS  Google Scholar 

  3. Groth AC, Calos MP (2004) Phage integrases: biology and applications. J Mol Biol 335:667–678

    Article  PubMed  CAS  Google Scholar 

  4. Thorpe HM, Wilson SE, Smith MC (2000) Control of directionality in the site-specific recombination system of the Streptomyces phage phiC31. Mol Microbiol 38:232–241

    Article  PubMed  CAS  Google Scholar 

  5. Groth AC, Olivares EC, Thyagarajan B, Calos MP (2000) A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci USA 97:5995–6000

    Article  PubMed  CAS  Google Scholar 

  6. Thyagarajan B, Guimaraes MJ, Groth AC, Calos MP (2000) Mammalian genomes contain active recombinase recognition sites. Gene 244:47–54

    Article  PubMed  CAS  Google Scholar 

  7. Thomason LC, Calendar R, Ow DW (2001) Gene insertion and replacement in Schizosaccharomyces pombe mediated by the Streptomyces bacteriophage phiC31 site-specific recombination system. Mol Genet Genomics 265:1031–1038

    Article  PubMed  CAS  Google Scholar 

  8. Thyagarajan B, Olivares EC, Hollis RP, Ginsburg DS, Calos MP (2001) Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol 21:3926–3934

    Article  PubMed  CAS  Google Scholar 

  9. Combes P, Till R, Bee S, Smith MC (2002) The streptomyces genome contains multiple pseudo-attB sites for the (phi)C31-encoded site-specific recombination system. J Bacteriol 184:5746–5752

    Article  PubMed  CAS  Google Scholar 

  10. Olivares EC, Hollis RP, Chalberg TW, Meuse L, Kay MA, Calos MP (2002) Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nat Biotechnol 20:1124–1128

    Article  PubMed  CAS  Google Scholar 

  11. Ortiz-Urda S, Thyagarajan B, Keene DR, Lin Q, Fang M, Calos MP, Khavari PA (2002) Stable nonviral genetic correction of inherited human skin disease. Nat Med 8:1166–1170

    Article  PubMed  CAS  Google Scholar 

  12. Groth AC, Fish M, Nusse R, Calos MP (2004) Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166:1775–1782

    Article  PubMed  CAS  Google Scholar 

  13. Allen BG, Weeks DL (2005) Transgenic Xenopus laevis embryos can be generated using phiC31 integrase. Nat Methods 2:975–979

    Article  PubMed  CAS  Google Scholar 

  14. Held PK, Olivares EC, Aguilar CP, Finegold M, Calos MP, Grompe M (2005) In vivo correction of murine hereditary tyrosinemia type I by phiC31 integrase-mediated gene delivery. Mol Ther 11:399–408

    Article  PubMed  CAS  Google Scholar 

  15. Smith MC, Till R, Brady K, Soultanas P, Thorpe H (2004) Synapsis and DNA cleavage in phiC31 integrase-mediated site-specific recombination. Nucleic Acids Res 32:2607–2617

    Article  PubMed  CAS  Google Scholar 

  16. Lister JA (2010) Transgene excision in zebrafish using the phiC31 integrase. Genesis 48:137–143

    Article  PubMed  CAS  Google Scholar 

  17. Saitoh N, Bell AC, Recillas-Targa F, West AG, Simpson M, Pikaart M, Felsenfeld G (2000) Structural and functional conservation at the boundaries of the chicken beta-globin domain. EMBO J 19:2315–2322

    Article  PubMed  CAS  Google Scholar 

  18. Bell AC, West AG, Felsenfeld G (2001) Insulators and boundaries: versatile regulatory elements in the eukaryotic genome. Science 291:447–450

    Article  PubMed  CAS  Google Scholar 

  19. West AG, Gaszner M, Felsenfeld G (2002) Insulators: many functions, many mechanisms. Genes Dev 16:271–288

    Article  PubMed  Google Scholar 

  20. Allen BG, Weeks DL (2006) Using phiC31 integrase to make transgenic Xenopus laevis embryos. Nat Protoc 1:1248–1257

    Article  PubMed  CAS  Google Scholar 

  21. Allen BG, Weeks DL (2009) Bacteriophage phiC31 integrase mediated transgenesis in Xenopus laevis for protein expression at endogenous levels. Methods Mol Biol 518:113–122

    Article  PubMed  CAS  Google Scholar 

  22. Chesneau A, Sachs LM, Chai N, Chen Y, Du Pasquier L, Loeber J, Pollet N, Reilly M, Weeks DL, Bronchain OJ (2008) Transgenesis procedures in Xenopus. Biol Cell 100:503–521

    Article  PubMed  CAS  Google Scholar 

  23. Sive HL, Grainger RM, Harland RM (2000) Early development of Xenopus laevis: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  24. Kroll KL, Amaya E (1996) Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122:3173–3183

    PubMed  CAS  Google Scholar 

  25. Sparrow DB, Latinkic B, Mohun TJ (2000) A simplified method of generating transgenic Xenopus. Nucleic Acids Res 28:E12

    Article  PubMed  CAS  Google Scholar 

  26. Ogino H, McConnell WB, Grainger RM (2006) Highly efficient transgenesis in Xenopus tropicalis using I-SceI meganuclease. Mech Dev 123:103–113

    Article  PubMed  CAS  Google Scholar 

  27. Pan FC, Chen Y, Loeber J, Henningfeld K, Pieler T (2006) I-SceI meganuclease-mediated transgenesis in Xenopus. Dev Dyn 235:247–252

    Article  PubMed  Google Scholar 

  28. Nieuwkoop PD, Faber J (1994) Normal table of Xenopus laevis (Daudin). Garland, New York

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Michele Calos for providing the pET11ΦC31 poly(A) plasmid, Gary Felsenfeld and colleagues for providing the HS4 insulator sequences, Paul Krieg for providing the γ-crystallin lens promoter, and Tim Mohun for providing the Nkx2-5 promoter. This work was supported by funding from the NIH (GM069944 and DC007481). Bryan Allen was a student in the Medical Scientist Training Program at the Roy J. and Lucille A Carver College of Medicine, University of Iowa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L. Weeks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Li, Y.E., Allen, B.G., Weeks, D.L. (2012). Using ΦC31 Integrase to Mediate Insertion of DNA in Xenopus Embryos. In: HOPPLER, S., Vize, P. (eds) Xenopus Protocols. Methods in Molecular Biology, vol 917. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-992-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-992-1_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-991-4

  • Online ISBN: 978-1-61779-992-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics