Skip to main content

Mathematical Modeling of Biomolecular Network Dynamics

  • Protocol
  • First Online:
Network Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 781))

Abstract

Mathematical and computational models have become indispensable tools for integrating and interpreting heterogeneous biological data, understanding fundamental principles of biological system functions, genera­ting reliable testable hypotheses, and identifying potential diagnostic markers and therapeutic targets. Thus, such tools are now routinely used in the theoretical and experimental systematic investigation of biological system dynamics. Here, we discuss model building as an essential part of the theoretical and experimental analysis of biomolecular network dynamics. Specifically, we describe a procedure for defining kinetic equations and parameters of biomolecular processes, and we illustrate the use of fractional activity functions for modeling gene expression regulation by single and multiple regulators. We further discuss the evaluation of model complexity and the selection of an optimal model based on information criteria. Finally, we discuss the critical roles of sensitivity, robustness analysis, and optimal experiment design in the model building cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bornholdt S (2005) Systems biology. Less is more in modeling large genetic networks. Science 310, 449–451.

    Google Scholar 

  2. Kim HD, Shay T, O’Shea EK, Regev A (2009) Transcriptional regulatory circuits: predicting numbers from alphabets. Science 325, 429–432.

    Google Scholar 

  3. van Riel NA (2006) Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments. Briefings in Bioinformatics 7, 364–374.

    Google Scholar 

  4. Likhoshvai V, Ratushny A (2007) Generalized Hill function method for modeling molecular processes. J Bioinform Comput Biol 5, 521–531.

    Google Scholar 

  5. Wagner A (2001) How to reconstruct a large genetic network from n gene perturbations in fewer than n(2) easy steps. Bioinformatics 17, 1183–1197.

    Google Scholar 

  6. Liao JC, Boscolo R, Yang YL, Tran LM, Sabatti C, Roychowdhury VP (2003) Network component analysis: reconstruction of regulatory signals in biological systems. Proc Natl Acad Sci USA 100, 15522–15527.

    Google Scholar 

  7. Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, Hannett NM, Tagne JB, Reynolds DB, Yoo J, Jennings EG, Zeitlinger J, Pokholok DK, Kellis M, Rolfe PA, Takusagawa KT, Lander ES, Gifford DK, Fraenkel E, Young RA (2004) Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104.

    Google Scholar 

  8. Herrgard MJ, Covert MW, Palsson BO (2004) Reconstruction of microbial transcriptional regulatory networks. Current opinion in biotechnology 15, 70–77.

    Google Scholar 

  9. Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A (2005) Reverse engineering of regulatory networks in human B cells. Nat Genet 37, 382–390.

    Google Scholar 

  10. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956.

    Google Scholar 

  11. Hu Z, Killion PJ, Iyer VR (2007) Genetic reconstruction of a functional transcriptional regulatory network. Nat Genet 39, 683–687.

    Google Scholar 

  12. Amit I, Garber M, Chevrier N, Leite AP, Donner Y, Eisenhaure T, Guttman M, Grenier JK, Li W, Zuk O, Schubert LA, Birditt B, Shay T, Goren A, Zhang X, Smith Z, Deering R, McDonald RC, Cabili M, Bernstein BE, Rinn JL, Meissner A, Root DE, Hacohen N, Regev A (2009) Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science 326, 257–263.

    Google Scholar 

  13. Marbach D, Prill RJ, Schaffter T, Mattiussi C, Floreano D, Stolovitzky G (2010) Revealing strengths and weaknesses of methods for gene network inference. Proc Natl Acad Sci USA 107, 6286–6291.

    Google Scholar 

  14. Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22, 437–467.

    Google Scholar 

  15. Thomas R (1973) Boolean formalization of genetic control circuits. J Theor Biol 42, 563–585.

    Google Scholar 

  16. Kauffman SA (1993) The Origins of Order: Self-Organization and Selection in Evolution. Oxford Univ. Press, New York.

    Google Scholar 

  17. Edelstein-Keshet L (2005) Mathematical Models in Biology. SIAM: Society for Industrial and Applied Mathematics, New York.

    Google Scholar 

  18. Bolouri H (2008) Computational Modelling Of Gene Regulatory Networks - A Primer. Imperial College Press, London.

    Google Scholar 

  19. Klipp E, Liebermeister W, Wierling C, Kowald A, Lehrach H, Herwig R (2009) Systems Biology: A Textbook. WILEY-VCH, Weinheim.

    Google Scholar 

  20. Gillespie DT (1976) A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions. Journal of Computational Physics 22, 403–434.

    Google Scholar 

  21. Gibson MA, Bruck J (2000) Efficient exact stochastic simulation of chemical systems with many species and many channels. J Phys Chem A 104, 1876–1889.

    Google Scholar 

  22. Wilkinson DJ (2006) Stochastic Modelling for Systems Biology. Chapman & Hall/CRC, Boca Raton, FL.

    Google Scholar 

  23. McAdams HH, Shapiro L (1995) Circuit simulation of genetic networks, Science 269, 650–656.

    Google Scholar 

  24. Likhoshvai VA, Matushkin IuG, Ratushnyi AV, Anan’ko EA, Ignat’eva EV, Podkolodnaia OA (2001) [A generalized chemical-kinetic method for modeling gene networks], Molekuliarnaia Biologiia 35, 1072–1079.

    Google Scholar 

  25. Shmulevich I, Dougherty ER, Kim S, Zhang W (2002) Probabilistic Boolean Networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18, 261–274.

    Google Scholar 

  26. de Jong H (2002) Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 9, 67–103.

    Google Scholar 

  27. Ratushny AV, Ramsey SA, Roda O, Wan Y, Smith JJ, Aitchison JD (2008) Control of transcriptional variability by overlapping feed-forward regulatory motifs. Biophysical Journal 95, 3715–3723.

    Google Scholar 

  28. Rao CV, Arkin AP (2003) Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm. J Chem Phys 118, 4999–5010.

    Google Scholar 

  29. Banga JR (2008) Optimization in computational systems biology. BMC systems biology 2, 47.

    Google Scholar 

  30. de Atauri P, Orrell D, Ramsey S, Bolouri H (2004) Evolution of “design” principles in biochemical networks. IET Sys Biol 1, 28–40.

    Google Scholar 

  31. Schwarz G (1978) Estimating the Dimension of a Model, The Annals of Statistics 6, 461–464.

    Google Scholar 

  32. Akaike H (1974) A New Look at the Statistical Model Identfication, IEEE Trans. Automatic Control 19, 716–723.

    Google Scholar 

  33. Burnham KP, Anderson DR (2002) Model Selection and Multi-Model Inference, Springer-Verlag New York, LLC.

    Google Scholar 

  34. Rabitz H (1989) Systems analysis at the molecular scale. Science 246, 221–226.

    Article  PubMed  CAS  Google Scholar 

  35. Ratushny AV, Likhoshvai VA, Ignatieva EV, Goryanin II, Kolchanov NA (2003) Resilience of Cholesterol Concentration to a Wide Range of Mutations in the Cell. Complexus 1, 142–148.

    Google Scholar 

  36. Ratushnyi AV, Likhoshvai VA, Ignat’eva EV, Matushkin YG, Goryanin II, Kolchanov NA (2003) A computer model of the gene network of the cholesterol biosynthesis regulation in the cell: analysis of the effect of mutations. Doklady Biochemistry and Biophysics 389, 90–93.

    Google Scholar 

  37. Stites EC, Trampont PC, Ma Z, Ravichandran KS (2007) Network analysis of oncogenic Ras activation in cancer. Science 318, 463–467.

    Google Scholar 

  38. Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S (2008) Global sensitivity analysis: the primer. John Wiley & Sons Ltd, Chichester, UK.

    Google Scholar 

  39. Chen WW, Schoeberl B, Jasper PJ, Niepel M, Nielsen UB, Lauffenburger DA, Sorger PK (2009) Input-output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data. Mol Syst Biol 5, 239.

    Google Scholar 

  40. King EL, Altman C (1956) A Schematic method of deriving the rate laws for enzyme-catalyzed reactions. The Journal of physical chemistry 60, 1375–1378.

    Google Scholar 

  41. Cornish-Bowden A (1977) An automatic method for deriving steady-state rate equations. Biochem J 165, 55–59.

    Google Scholar 

  42. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical Recipes with Source Code CD-ROM 3rd Edition: The Art of Scientific Computing. Cambridge University Press; 3rd edn., New York.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health through grants from the National Institute of General Medical Sciences (R01-GM075152 and P50-GM076547), the National Technology Centers for Networks and Pathways (U54-RR022220), and the National Heart, Lung, and Blood Institute (K25-HL098807 to S.A.R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Aitchison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ratushny, A.V., Ramsey, S.A., Aitchison, J.D. (2011). Mathematical Modeling of Biomolecular Network Dynamics. In: Cagney, G., Emili, A. (eds) Network Biology. Methods in Molecular Biology, vol 781. Humana Press. https://doi.org/10.1007/978-1-61779-276-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-276-2_21

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-275-5

  • Online ISBN: 978-1-61779-276-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics