Skip to main content

Recent Progress in the Structure Determination of GPCRs, a Membrane Protein Family with High Potential as Pharmaceutical Targets

  • Protocol
  • First Online:
Membrane Protein Structure Determination

Part of the book series: Methods in Molecular Biology ((MIMB,volume 654))

Abstract

G protein-coupled receptors (GPCRs) constitute a highly diverse and ubiquitous family of integral membrane proteins, transmitting signals inside the cells in response to an assortment of disparate extracellular stimuli. Their strategic location on the cell surface and their involvement in crucial cellular and physiological processes turn these receptors into highly important pharmaceutical targets. Recent technological developments aimed at stabilization and crystallization of these receptors have led to significant breakthroughs in GPCR structure determination efforts. One of the successful approaches involved receptor stabilization with the help of a fusion partner combined with crystallization in lipidic cubic phase (LCP). The success of using an LCP matrix for crystallization is generally attributed to the creation of a more native, membrane-like stabilizing environment for GPCRs just prior to nucleation and to the formation of type I crystal lattices, thus generating highly ordered and strongly diffracting crystals. Here we describe protocols for reconstituting purified GPCRs in LCP, performing pre-crystallization assays, setting up crystallization trials in manual mode, detecting crystallization hits, optimizing crystallization conditions, harvesting, and collecting crystallographic data The protocols provide a sensible framework for approaching crystallization of stabilized GPCRs in LCP, however, as in any crystallization experiment, extensive screening and optimization of crystallization conditions as well as optimization of protein construct and purification steps are required. The process remains risky and these protocols do not necessarily guarantee success.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272

    Article  PubMed  CAS  Google Scholar 

  2. Rubenstein K (2008) GPCRs: dawn of a new era? Cambridge Healthtech Institute, Needham

    Google Scholar 

  3. Jacoby E, Bouhelal R, Gerspacher M, Seuwen K (2006) The 7 TM G-protein-coupled receptor target family. ChemMedChem 1:761–782

    Article  PubMed  Google Scholar 

  4. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289:739–745

    Article  PubMed  CAS  Google Scholar 

  5. Bosier B, Hermans E (2007) Versatility of GPCR recognition by drugs: from biological implications to therapeutic relevance. Trends Pharmacol Sci 228:438–446

    Article  Google Scholar 

  6. Day PW, Rasmussen SG, Parnot C, Fung JJ, Masood A, Kobilka TS, Yao XJ, Choi HJ, Weis WI, Rohrer DK, Kobilka BK (2007) A monoclonal antibody for G protein-coupled receptor crystallography. Nat Methods 4:927–929

    Article  PubMed  CAS  Google Scholar 

  7. Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387

    Article  PubMed  CAS  Google Scholar 

  8. Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318:1266–1273

    Article  PubMed  CAS  Google Scholar 

  9. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  PubMed  CAS  Google Scholar 

  10. Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, Stevens RC (2008) The 2.6 Angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217

    Article  PubMed  CAS  Google Scholar 

  11. Serrano-Vega MJ, Magnani F, Shibata Y, Tate CG (2008) Conformational thermostabilization of the beta1-adrenergic receptor in a detergent-resistant form. Proc Natl Acad Sci U S A 105:877–882

    Article  PubMed  CAS  Google Scholar 

  12. Magnani F, Shibata Y, Serrano-Vega MJ, Tate CG (2008) Co-evolving stability and conformational homogeneity of the human adenosine A2a receptor. Proc Natl Acad Sci U S A 105:10744–10749

    Article  PubMed  CAS  Google Scholar 

  13. Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454:486–491

    Article  PubMed  CAS  Google Scholar 

  14. Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EY, Velasquez J, Kuhn P, Stevens RC (2008) A specific cholesterol binding site is established by the 2.8 A structure of the human beta(2)-adrenergic receptor. Structure 16:897–905

    Article  PubMed  CAS  Google Scholar 

  15. Katritch V, Cherezov V, Hanson MA, Roth RB, Abagyan R (2009) Analysis of the β2AR structure provides insight into agonist binding and role of the TM5 helix in the activation mechanism. J Mol Recognit (in press)

    Google Scholar 

  16. Mustafi D, Palczewski K (2009) Topology of class A G protein-coupled receptors: insights gained from crystal structures of rhodopsins, adrenergic and adenosine receptors. Mol Pharmacol 75:1–12

    Article  PubMed  CAS  Google Scholar 

  17. Reynolds KA, Katritch V, Abagyan R (2009) Identifying conformational changes of the beta(2) adrenoceptor that enable accurate prediction of ligand/receptor interactions and screening for GPCR modulators. J Comput Aided Mol Des (in press)

    Google Scholar 

  18. Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, Choe HW, Hofmann KP, Ernst OP (2009) Crystal structure of opsin in its G-protein-interacting conformation. Nature 455:497–502

    Article  Google Scholar 

  19. Caffrey M (2009) Crystallizing membrane proteins for structure determination: use of lipidic mesophases. Annu Rev Biophys 38:29–51

    Article  PubMed  CAS  Google Scholar 

  20. Caffrey M, Cherezov V (2009) Crystallizing membrane proteins using lipidic mesophases. Nat Protocols (in press)

    Google Scholar 

  21. Cheng A, Hummel B, Qiu H, Caffrey M (1998) A simple mechanical mixer for small viscous lipid-containing samples. Chem Phys Lipids 95:11–21

    Article  PubMed  CAS  Google Scholar 

  22. Cherezov V, Clogston J, Misquitta Y, Abdel-Gawad W, Caffrey M (2002) Membrane protein crystallization in meso: lipid type-tailoring of the cubic phase. Biophys J 83:3393–3407

    Article  PubMed  CAS  Google Scholar 

  23. Cherezov V, Liu J, Hanson MA, Griffith MT, Stevens RC (2008) LCP-FRAP assay for pre-screening membrane proteins for in meso crystallization. J Cryst Growth Design 8:4307–4315

    Article  CAS  Google Scholar 

  24. Cherezov V, Peddi A, Muthusubramaniam L, Zheng YF, Caffrey M (2004) A robotic system for crystallizing membrane and soluble proteins in lipidic mesophases. Acta Crystallogr D Biol Crystallogr 60:1795–1807

    Article  PubMed  Google Scholar 

  25. Soumpasis DM (1983) Theoretical analysis of fluorescence photobleaching recovery experiments. Biophys J 41:95–97

    Article  PubMed  CAS  Google Scholar 

  26. Cherezov V, Caffrey M (2007) Miniaturization and automation for high-throughput membrane protein crystallization in lipidic mesophases. In: Chayen NE (ed) Protein crystallization strategies for structural genomics. San Diego, International University Line

    Google Scholar 

  27. Cherezov V, Caffrey M (2003) Nano-volume plates with excellent optical properties for fast, inexpensive crystallization screening of membrane proteins. J Appl Crystallogr 36:1372–1377

    Article  CAS  Google Scholar 

  28. Lunde CS, Rouhani S, Facciotti MT, Glaeser RM (2006) Membrane-protein stability in a phospholipid-based crystallization medium. J Struct Biol 154:223–231

    Article  PubMed  CAS  Google Scholar 

  29. Forsythe E, Achari A, Pusey ML (2006) Trace fluorescent labeling for high-throughput crystallography. Acta Crystallogr D Biol Crystallogr 62:339–346

    Article  PubMed  Google Scholar 

  30. Cherezov V, Fersi H, Caffrey M (2001) Crystallization screens: compatibility with the lipidic cubic phase for in meso crystallization of membrane proteins. Biophys J 81:225–242

    Article  PubMed  CAS  Google Scholar 

  31. Vargas R, Mateu L, Romero R (2003) The effect of increasing concentrations of precipitating salts used to crystallize proteins on the structure of the lipidic Q224 cubic phase. Chem Phys Lipids 127:103–111

    Article  Google Scholar 

  32. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326

    Article  CAS  Google Scholar 

  33. Kabsch W (1993) Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J Appl Crystallogr 26:795–800

    Article  CAS  Google Scholar 

  34. Landau EM, Rosenbusch JP (1996) Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc Natl Acad Sci U S A 93:14532–14535

    Article  PubMed  CAS  Google Scholar 

  35. Misquitta Y, Caffrey M (2003) Detergents destabilize the cubic phase of monoolein: implications for membrane protein crystallization. Biophys J 85:3084–3096

    Article  PubMed  CAS  Google Scholar 

  36. Ai X, Caffrey M (2000) Membrane protein crystallization in lipidic mesophases: detergent effects. Biophys J 79:394–405

    Article  PubMed  CAS  Google Scholar 

  37. Cherezov V, Caffrey M (2005) A simple and inexpensive nanoliter-volume dispenser for highly viscous materials used in membrane protein crystallization. J Appl Crystallogr 38:398–400

    Article  CAS  Google Scholar 

  38. Qiu H, Caffrey M (2000) The phase diagram of the monoolein/water system: metastability and equilibrium aspects. Biomaterials 21:223–234

    Article  PubMed  CAS  Google Scholar 

  39. Misquitta Y, Cherezov V, Havas F, Patterson S, Mohan JM, Wells AJ, Hart DJ, Caffrey M (2004) Rational design of lipid for membrane protein crystallization. J Struct Biol 148:169–175

    Article  PubMed  CAS  Google Scholar 

  40. Yamashita J, Shiono M, Hato M (2008) New lipid family that forms inverted cubic phases in equilibrium with excess water: molecular structure–aqueous phase structure relationship for lipids with 5, 9, 13, 17-tetramethyloctadecyl and 5, 9, 13, 17-tetramethyloctadecanoyl chains. J Phys Chem B 112:12286–12296

    Article  PubMed  CAS  Google Scholar 

  41. Cherezov V, Clogston J, Papiz MZ, Caffrey M (2006) Room to move: crystallizing membrane proteins in swollen lipidic mesophases. J Mol Biol 357:1605–1618

    Article  PubMed  CAS  Google Scholar 

  42. Nollert P, Landau EM (1998) Enzymic release of crystals from lipidic cubic phases. Biochem Soc Trans 26:709–713

    PubMed  CAS  Google Scholar 

  43. Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK (1999) Structure of bacteriorhodopsin at 1.55 A resolution. J Mol Biol 291:899–911

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NIH Roadmap Initiative grant P50 GM073197 (JCIMPT) and the Protein Structure Initiative grant U54 GM074961 (ATCG3D). The authors acknowledge contributions from colleagues Michael A. Hanson, Wei Liu, Jeffrey Liu, Mark Griffith, Ellen Chien, Veli-Pekka Jaakola, Chris Roth and Peter Kuhn.

The authors acknowledge the support of Janet Smith, Robert Fischetti, and the GM/CA-CAT team at the Advanced Photon Source, for assistance in development and use of the minibeam and beamtime. The GM/CA-CAT beamline (23-ID) is supported by the National Cancer Institute (Y1-CO-1020) and the National Institute of General Medical Sciences (Y1-GM-1104).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cherezov, V., Abola, E., Stevens, R.C. (2010). Recent Progress in the Structure Determination of GPCRs, a Membrane Protein Family with High Potential as Pharmaceutical Targets. In: Lacapère, JJ. (eds) Membrane Protein Structure Determination. Methods in Molecular Biology, vol 654. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-762-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-762-4_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-761-7

  • Online ISBN: 978-1-60761-762-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics