Skip to main content

Use of DNA Combing to Study DNA Replicationin Xenopus and Human Cell-Free Systems

  • Protocol
  • First Online:
DNA Replication

Part of the book series: Methods in Molecular Biology ((MIMB,volume 521))

Summary

The Xenopus egg extract has become the gold standard for in vitro studies of metazoan DNA replication. We have used this system to study the mechanisms that ensure rapid and complete DNA replication despite random initiation during Xenopus early development. To this end we adapted the DNA combing technique to investigate the distribution of replication bubbles along single DNA molecules. DNA replicating in egg extracts is labelled by addition of digoxigenin-11-dUTP and/or biotin-16-dUTP at precise times. These two dTTP analogues are efficiently incorporated into DNA during replication in the extract. After DNA purification and combing the DNA is visualized with appropriate fluorescent antibody/streptavidin molecules. Replicated DNA appears as green or red tracts whose pattern reveals how each molecule was replicated, allowing to follow the dynamics of DNA replication through S phase. We describe (a) the preparation and use of egg extracts and demembranated sperm chromatin templates; (b) a simple method for preparing silanized glass coverslips suitable for DNA combing and fluorescence detection; (c) two alternative replicative DNA labelling schemes and their respective advantages; and (d) a protocol for combining replicative labelling with detection of specific DNA sequences by fluorescent in situ hybridization (FISH).Although most observations made in Xenopus egg extracts are applicable to other eukaryotes, there are differences in cell-cycle regulation between mammalian somatic cells and embryonic amphibian cells, which led to the development of human cell-free systems that can initiate semi-conservative chromosomal DNA replication under cell-cycle control. We have employed the knowledge gained with Xenopus extracts to characterize DNA replication intermediates generated in human cell-free systems using DNA combing. We describe here (a) the preparation and use of human cell-free extracts and initiation-competent template nuclei for DNA combing studies; (b) an optimized labelling scheme for DNA replication intermediates by molecular combing and fluorescence microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DePamphilis, M. L. (1997) DNA replication, Methods 13, 209–210

    Article  PubMed  CAS  Google Scholar 

  2. Hyrien, O., Marheineke, K., and Goldar, A. (2003) Paradoxes of eukaryotic DNA replication: MCM proteins and the random completion problem, BioEssays 25, 116–125

    Article  PubMed  CAS  Google Scholar 

  3. Hyrien, O., Maric, C., and M×échali, M. (1995) Transition in specification of embryonic metazoan DNA replication origins, Science 270, 994–997

    Article  PubMed  CAS  Google Scholar 

  4. Hyrien, O., and M×échali, M. (1993) Chromosomal replication initiates and terminates at random sequences but at regular intervals in the ribosomal DNA of Xenopus early embryos, EMBO J 12, 4511–4520

    PubMed  CAS  Google Scholar 

  5. Hyrien, O., and M×échali, M. (1992) Plasmid replication in Xenopus eggs and egg extracts: a 2D gel electrophoretic analysis, Nucleic Acids Res 20, 1463–1469

    Article  PubMed  CAS  Google Scholar 

  6. Mahbubani, H. M., Paull, T., Elder, J. K., and Blow, J. J. (1992) DNA replication initiates at multiple sites on plasmid DNA in Xenopus egg extracts, Nucleic Acids Res 20, 1457–1462

    Article  PubMed  CAS  Google Scholar 

  7. Blumenthal, A. B., Kriegstein, H. J., and Hogness, D. S. (1974) The units of DNA replication in Drosophila melanogaster chromosomes, Cold Spring Harb Symp Quant Biol 38, 205–223

    Article  PubMed  CAS  Google Scholar 

  8. Lucas, I., Chevrier-Miller, M., Sogo, J. M., and Hyrien, O. (2000) Mechanisms ensuring rapid and complete DNA replication despite random initiation in Xenopus early embryos, J Mol Biol 296, 769–786

    Article  PubMed  CAS  Google Scholar 

  9. Huberman, J. A., and Riggs, A. D. (1968) On the mechanism of DNA replication in mammalian chromosomes, J Mol Biol 32, 327–341

    Article  PubMed  CAS  Google Scholar 

  10. Bensimon, A., Simon, A., Chiffaudel, A., Croquette, V., Heslot, F., and Bensimon, D. (1994) Alignment and sensitive detection of DNA by a moving interface, Science 265, 2096–2098

    Article  PubMed  CAS  Google Scholar 

  11. Michalet, X., Ekong, R., Fougerousse, F., Rousseaux, S., Schurra, C., Hornigold, N., van Slegtenhorst, M., Wolfe, J., Povey, S., Beckmann, J. S., and Bensimon, A. (1997) Dynamic molecular combing: stretching the whole human genome for high-resolution studies, Science 277, 1518–1523

    Article  PubMed  CAS  Google Scholar 

  12. Herrick, J., Stanislawski, P., Hyrien, O., and Bensimon, A. (2000) Replication fork density increases during DNA synthesis in X. laevis egg extracts, J Mol Biol 300, 1133–1142

    Article  PubMed  CAS  Google Scholar 

  13. Marheineke, K., and Hyrien, O. (2001) Aphidicolin triggers a block to replication origin firing in Xenopus egg extracts, J Biol Chem 276, 17092–17100

    Article  PubMed  CAS  Google Scholar 

  14. Marheineke, K., and Hyrien, O. (2004) Control of replication origin density and firing time in Xenopus egg extracts: role of a caffeine-sensitive, ATR-dependent checkpoint, J Biol Chem 279, 28071–28081.

    Article  PubMed  CAS  Google Scholar 

  15. Marheineke, K., Hyrien, O., and Krude, T. (2005) Visualization of bidirectional initiation of chromosomal DNA replication in a human cell free system, Nucleic Acids Res 33, 6931–6941

    Article  PubMed  CAS  Google Scholar 

  16. Krude, T. (2006) Initiation of chromosomal DNA replication in mammalian cell-free systems, Cell Cycle 5, 2115–2122

    Article  PubMed  CAS  Google Scholar 

  17. . Krude, T., Christov, C., Hyrien, O., and Marheineke, K. (2008) Y RNA Functions at the initiation step of mammalian chromosomal DNA replication, submitted

    Google Scholar 

  18. Lengronne, A., Pasero, P., Bensimon, A., and Schwob, E. (2001) Monitoring S phase progression globally and locally using BrdU incorporation in TK(+) yeast strains, Nucleic Acids Res 29, 1433–1442

    Article  PubMed  CAS  Google Scholar 

  19. Lemaitre, J. M., Danis, E., Pasero, P., Vassetzky, Y., and Mechali, M. (2005) Mitotic remodeling of the replicon and chromosome structure, Cell 123, 787–801

    Article  PubMed  CAS  Google Scholar 

  20. Pillaire, M. J., Betous, R., Conti, C., Czaplicki, J., Pasero, P., Bensimon, A., Cazaux, C., and Hoffmann, J. S. (2007) Upregulation of error-prone DNA polymerases beta and kappa slows down fork progression without activating the replication checkpoint, Cell Cycle 6, 471–477

    Article  PubMed  CAS  Google Scholar 

  21. Conti, C., Sacca, B., Herrick, J., Lalou, C., Pommier, Y., and Bensimon, A. (2007) Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells, Mol Biol Cell 18, 3059–3067

    Article  PubMed  CAS  Google Scholar 

  22. Pasero, P., Bensimon, A., and Schwob, E. (2002) Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus, Genes Dev 16, 2479–2484

    Article  PubMed  CAS  Google Scholar 

  23. Anglana, M., Apiou, F., Bensimon, A., and Debatisse, M. (2003) Dynamics of DNA replication in mammalian somatic cells: nucleotide pool modulates origin choice and interorigin spacing, Cell 114, 385–394

    Article  PubMed  CAS  Google Scholar 

  24. Lebofsky, R., and Bensimon, A. (2005) DNA replication origin plasticity and perturbed fork progression in human inverted repeats, Mol Cell Biol 25, 6789–6797

    Article  PubMed  CAS  Google Scholar 

  25. . Lebofsky, R., Heilig, R., Sonnleitner, M., Weissenbach, J., and Bensimon, A. (2006) DNA replication origin interference increases the spacing between initiation events in human cells, Mol Biol Cell 17, 5337–5345

    Google Scholar 

  26. Allemand, J. F., Bensimon, D., Jullien, L., Bensimon, A., and Croquette, V. (1997) pH-dependent specific binding and combing of DNA, Biophys J 73, 2064–2070

    Article  PubMed  CAS  Google Scholar 

  27. .Labit, H., Goldar, A., Guilbaud, G., Douarche, C., Hyrien, O., and Marheineke, K. (2008) An optimized easy method for preparing silanized surfaces for FISH and replication mapping on combed DNA fibers, Biotechniques, in press

    Google Scholar 

  28. Gurdon, J. B. (1976) Injected nuclei in frog oocytes: fate, enlargement, and chromatin dispersal, J Embryol Exp Morphol 36, 523–540

    PubMed  CAS  Google Scholar 

  29. Murray, A. W. (1991) Cell cycle extracts, Methods Cell Biol 36, 581–605

    Article  PubMed  CAS  Google Scholar 

  30. Blow, J. J., and Laskey, R. A. (1986) Initiation of DNA replication in nuclei and purified DNA by a cell-free extract of Xenopus eggs, Cell 47, 577–587

    Article  PubMed  CAS  Google Scholar 

  31. Szuts, D., and Krude, T. (2004) Cell cycle arrest at the initiation step of human chromosomal DNA replication causes DNA damage, J Cell Sci 117, 4897–4908

    Article  PubMed  Google Scholar 

  32. Krude, T. (1999) Mimosine arrests proliferating human cells before onset of DNA replication in a dose-dependent manner, Exp Cell Res 247, 148–159

    Article  PubMed  CAS  Google Scholar 

  33. Krude, T., Jackman, M., Pines, J., and Laskey, R. A. (1997) Cyclin/Cdk-dependent initiation of DNA replication in a human cell-free system, Cell 88, 109–119

    Article  PubMed  CAS  Google Scholar 

  34. Li, J. J., and Kelly, T. J. (1984) Simian virus 40 DNA replication in vitro, Proc Natl Acad Sci U S A 81, 6973–6977

    Article  PubMed  CAS  Google Scholar 

  35. Krude, T. (2000) Initiation of human DNA replication in vitro using nuclei from cells arrested at an initiation-competent state, J Biol Chem 275, 13699–13707

    Article  PubMed  CAS  Google Scholar 

  36. Keller, C., Hyrien, O., Knippers, R., and Krude, T.(2002) Site-specific and temporally controlled initiation of DNA replication in a human cell-free system, Nucleic Acids Res. 30, 2114–2123

    Article  PubMed  CAS  Google Scholar 

  37. Brzoska, J., Shahidzadeh, N., and Rondelez, F. (1992) Evidence of a transition temperature for the optimum deposition of grafted monolayer coatings, Nature 360, 719–721

    Article  CAS  Google Scholar 

  38. Dong, J., Wang, A., Simon Ng, K., and Mao, G.(2006) Self-assembly of octadecyltrichlorosilane monolayers on silicon-based substrates by chemical vapour deposition, Thin Solid Films 515, 2116–2122

    Article  CAS  Google Scholar 

  39. Stoeber, K., Mills, A. D., Kubota, Y., Krude, T., Romanowski, P., Marheineke, K., Laskey, R. A., and Williams, G. H. (1998) Cdc6 protein causes premature entry into S phase in a mammalian cell- free system, EMBO J 17, 7219–7229

    Article  PubMed  CAS  Google Scholar 

  40. Angst, D., and Simmons, G. (1991) Moisture absorption characteristics of organosiloxane self-assembled monolayers, Langmuir 7, 2236–2242

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J-F Allemand (ENS, Paris) for many helpful discussions and for providing us a motorized device of his design to comb DNA; and B. Berge, Z. Gueroui, and C. Place (ENS-Lyon) for providing us silanized coverslips prepared by gas-phase silanization. The T.K. lab is supported by Cancer Research UK, the O.H. lab by the Association pour la Recherche sur le Cancer, the Ligue Nationale contre le Cancer (Comit×é de Paris), the Agence Nationale pour la Recherche and the Fondation pour la RechercheM×édicale, the A.G. lab by the Association pour la Recherche sur le Cancer, the Agence Nationale pour la Recherche and the Commissariat ×° l'Energie Atomique.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Marheineke, K., Goldar, A., Krude, T., Hyrien, O. (2009). Use of DNA Combing to Study DNA Replicationin Xenopus and Human Cell-Free Systems. In: Vengrova, S., Dalgaard, J. (eds) DNA Replication. Methods in Molecular Biology, vol 521. Humana Press. https://doi.org/10.1007/978-1-60327-815-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-815-7_33

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-814-0

  • Online ISBN: 978-1-60327-815-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics